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ABSTRACT

CEPXS is a multigroup-Legendre cross-section generating code. The
multigroup-Legendre cross sections produced by CEPXS enable coupled
electron-photon transport calculations to be performed with the one-
dimensional discrete ordinates code, ONEDANT. We recommend that the
1989 version of ONEDANT that contains linear-discontinuousspatial
differencing and S2 synthetic acceleration be used for such
calculations. CEPXS/ONEDANT effectively solves the Boltzmann-CSD
transport equation for electrons and the Boltzmann transport equation
for photons over the energy range from 100 MeV to 1.0 keV. The
continuous slowing-down approximation is used for those electron
interactions that result in small-energy losses. The extended transport
correction is applied to the forward-peaked elastic scattering cross
section for electrons. A standard multigroup-Legendretreatment is used
for the other coupled electron-photon cross sections. CEPXS extracts
electron cross-section information from the DATAPAC data set and photon
cross-section information from Biggs-Lighthill data. The model that is
used for ionization/relaxation in CEPXS is essentially the same as that
employed in ITS.
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I. CROSS SECTIONS

1.1 INTRODUCTION

A macroscopic cross section, o(r,E), can be defined as the probability

that a particle undergoes an interaction per unit pathlength of travel.

Such cross sections have units of inverse length and depend on the

kinetic energy, E, of the particle and its spatial position, r.

Other macroscopic cross sections define the probability that particles

emerge from an interaction with specified energies and angles. These

differential macroscopic cross sections also depend on the energy, E’,

of the emergent particle and flu,the difference between the directions

of the emergent particle and of the incident particle:

do(r,E,E’,llff)
a(r,E+E’,il”)=

dE’dON
(1.1)

Differential macroscopic cross sections have units of inverse length per

energy per steradian.

Since differential cross sections do not depend on the azimuthal

component of Q“, these cross sections may be expressed as:

~ da(r,E,E’,#)
u(r,E+Et,p) = ~=

dl!l’dp
(I.2)

In CEPXS, it is assumed that the differential cross sections are also

separable in energy and angle:

(I.3)

where f(~) is a normalized angular distribution.

The energy and angular variations of coupled electron-photon cross

sections can be represented by multigroup-Legendre expansions. The

coefficients of these expansions are called multigroup-Legendre “cross

sectionsw [BELL]. Standard discrete ordinates codes use cross section

data in this form. Neutron-gamma transport calculations are commonly

performed with discrete ordinates codes. However, a production discrete

ordinates code for electron-photon transport calculations has not

heretofore been available. The cross sections produced by CEPXS permit

such calculations to be performed with the standard discrete ordinates

code, ONEDANT.

The only standard discrete ordinates code that we recommend for use in
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conjunction with CEPXS is the 1989 version of ONEDANT that contains

linear-discontinuousspatial differencing [ONET], S2 synthetic

acceleration [LJL3], Galerkin quadrature [MOR5], and a new angular

differencing scheme for curvilinear geometries [MOR6]. In the remainder

of this report, we shall refer to this version of ONEDANT as ONEDANT-LD.

The input and output of ONEDANT-LD is the same as that described in

earlier ONEDANT documentation [ONED].

Three reference documents have been written to aid the user of the

CEPXS/ONEDANT-LD code package: a User’s Guide, a Physics Guide, and a

Results Guide. The User’s Guide describes the operation of the

CEPXS/ONEDANT-LD code package. The Results Guide provides an extensive

set of examples that illustrates the variety of calculations that are

possible with CEPXS/ONEDANT-LD,

This document is the Physics Guide. In the first chapter, the

multigroup-Legendre cross sections produced by CEPXS are reviewed. The

following chapters examine the cross sections for specific interactions

in greater detail. Approximations that are unique to electrons (and

positrons), such as the extended transport correction and the restricted

continuous slowing-down approximation, are explained. In Appendix A,

sections of the CEPXS code that relate to specific cross sections are

identified.

The cross-section generating code, CEPXS, was devised to meet two goals:

(1) The cross sections produced by CEPXS enable coupled electron-photon

transport calculations to be performed with the standard discrete

ordinates code, ONEDANT-LD. Standard discrete ordinates codes solve the

Boltzmann transport equation [BELL] for all types of particles. For

instance, such discrete ordinates codes can be used for both neutron and

gamma transport calculations. While the Boltzmann transport equation

also applies to the transport of electrons in field-free environments

without collective (non-linear) effects, discrete ordinates codes are

ill-suited for solving the Boltzmann transport equation for electrons.

The numerical reasons for these difficulties are discussed in the next

chapter. However, CEPXS constructs special electron multigroup-Legendre

cross sections that enable a Boltzmann transport solver like ONEDANT-LD

to effectively solve the more amenable Boltzmann-CSD transport equation

[MOR2, BART] for electrons.

(2) CEPXS models the same physical interactions as Version 2.1 of ITS

code package. The Integrated-TIGER-Series [ITS] code package consists

of state-of-the art coupled electron-photon Monte Carlo codes. Many of

the same physical models are used in both CEPXS and ITS. Materials of
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arbitrary composition can be specified by the user of either code. The

electron-photon cascade is modelled over a similar energy range in the

two codes. Electron cross sections are not generally available at low

energies (below one kev) for materials of arbitrary composition. Hence,

the transport of particles below one keV is not allowed by either code.

The maximum particle energy by CEPXS is 100 MeV.

1.2 COMPOUNDS

The cross section of a compound material can be expressed as a

combination of the cross sections of its constituent elements. Consider

the following cross sections:

u s Macroscopic cross section of an element in units of cm2/g

amol s Macroscopic cross section of a compound in units of cm2/g

f s Microscopic cross section of an element in units of cm2/atom

~mol ~ Microscopic cross section of a compound in units of cm2/molecule

A microscopic cross section is related to the probability of interaction

per atom (or per molecule.) Microscopic cross sections are expressed in

units of area and are related to their macroscopic counterparts by:

(I.4)

where NA is Avogardo’s number, A is the gram-atomic weight of an element
and &Ol is the gram-molecular weight of a molecule. The microscopic

cross section of a molecule is defined as:

(I.5)

i

where Ni is the number fraction of the ith element in the compound (i.e.

the number of atoms per molecule.) Hence, the macroscopic cross section

of a compound can be expressed as a combination of the macroscopic cross

sections of the constituent elements:

‘Afmol
>

A.
o N—
mol = A= i A~oloi = I

Wi 0.
1

mo1
i i (I.6)
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“th element in the compound.where wi is the weight fraction of the 1

In CEPXS, most cross sections for compounds can be constructed according

toEq. 1.6. However, the collisional stopping power of a compound is

not merely a combination of elemental stopping powers.

1.3 THE MULTIGROUP-LEGENDREAPPROXIMATION

The multigroup method [BELL] involves a discretization of the particle

energy domain into energy intervals or groups:

I group 1
I
group 2 0 “

‘1 ‘2 ‘3

where El > E2 > Es > 0 0 0 EG+I and EG+I

convention, the higher group numbers are

energies.

In CEPXS, different group structures may

00

I
group G I

‘G
E
G+l

is the cutoff energy. By

associated with lower particle

be selected for photons and

electrons. However, the energy domain must be the same for all

particles. That is, the cutoff energy, Ea+l, and the upper boundary

energy, El, must be the same for both electrons and photons.

In the multigroup approximation, all particles in the same energy group

are assumed to interact with the same probability. The multigroup

approximation is realistic only if the cross sections do not vary

greatly in energy within a group. Hence, the structure of the energy

grid can impact the accuracy of a prediction. For instance, the

photoelectric cross section for an electron whose energy is slightly

greater then a shell binding energy is significantly different than the
photoelectric cross section for an electron whose energy is slightly

less than that binding energy. In order to calculate the distribution

of photoelectrons accurately, the group structure cannot be coarse in

the vicinity of the shell binding energies.

The multigroup angular flux, ~g(r,~), is defined as:

I
E

#g(r,n) = g dE #(r,fl,E)
Eg+l

where y(r,Q,E) is the angular flux. The multigroup scalar flux is

defined as:

(1.7)
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(I.8)

The differential cross section, a(r,E+E’,p), can be represented by a

Legendre expansion:

00

a(r,E+E(,p) =
I

~aL(r,E+E’) PL(P)

L=O

where:

aL(r,E+E’) = ~“do PLO) a(r,E+E’,p)

J1
= 2r ‘~pL(@ ~(r,E+E’,#)

-1

(I.9)

(1.10)

In CEPXS, the Legendre expansion represented by Eq. 1.9 is truncated at

a finite order.

CEPXS does not treat the spatial variations of the cross section due to

material heterogenities. Such variations are represented in ONEDANT

[ONED] and will not be discussed here. In the remainder of this report,

the spatial dependence of the cross sections will be ignored.

The multigroup-Legendre expansion coefficients for the cross sections

that describe scattering and production interactions are stored by CEPXS

in transfer matrices. For a differential cross section, the expansion

coefficients that are stored in the transfer matrix of Lth-order are:

(1.11)

where W(E) is the multigroup weighting function. In the above notation,

the row index of the transfer matrix is (g) and the column index of the

transfer matrix is (g’). Except where noted in this report, numerical

quadrature techniques are used in CEPXS to evaluate these multigroup-

Legendre expansion coefficients.

Since a weighting function must be arbitrarily chosen, a unique set of
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multigroup cross sections does not exist. In CEPXS, a weighting

function of zero-th order in energy is generally used to construct the

multigroup cross sections. This function is piece-wise constant in

energy:

W(E) = C= for Eg~ E~E=+l (I.12)

where c= is a group-dependent

Hence the multigroup-Legendre

constant.

expansion coefficients become:

H
E E,

u g dEg dE’ aL(E+E’)
g+g’,L = E

Eg+l g’+1

AE
(1.13)

g

where flE== E= - E~+l

1.4

The

THE COUPLED ELECTRON-PHOTON BOLTZW TRANSPORT EQUATIONS

coupled Boltzmann equations [BELL] for the transport of the

particles in the coupled electron-photon cascade are:

fl’V#p+ E: #p=J dE’~ dll’Zpp(E’+E,fl’+fl)#p(r,E’,fl’)

+ ~ dE’~ dfl’17p(E’+E,ll’+fl)#7(r,E’,fl’)

where:
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Et(r)

El(r)

E;(r)

Eee(E’+E,fl’+fl)

17e(E’+E,0’+fi)

Ipe(E’+E,fl’+O)

X77(E’+E,O’+0)

Ie7(E’+E,Wl)

XP7(E’+E,WQ)

Epp(E’+E,O’+fl)

z7p(E’+E,n’+n)

The electron angular flux,

The photon angular flux,

The positron angular flux,

Total cross sections for electron interactions.

Total cross section for photon interactions,

Total cross section for positron interactions,

The electron-to-electrondifferential cross
section,

The photon-to-electron differential cross section

The positron-to-electrondifferential cross
section,

The photon-to-photon differential cross section

The electron-to-photondifferential cross section

The positron-to-photon differential cross section

The positron-to-positrondifferential cross
section

The photon-to-positron differential cross section
(psi; production),

The boundary conditions which specify the source distribution are not

included in”Eq. 1.14. The cross sections, 1, that are appear in the

Boltzmann transport equation are aggregate cross sections that are

assembled from the macroscopic cross sections for several interactions.

1.5 AGGREGATE TRANSFER MATRICES

CEPXS constructs multigroup-Legendre transfer matrices for each of the
eight aggregate differential cross sections that appear in the coupled

Boltzmann transport equations. A variety of production and scattering

interactions contribute to each of these aggregate transfer matrices.
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The aggregate electron-to-electrontransfer matrix includes collisional

scattering (C), knock-on production (K), radiative scattering (B),

elastic scattering (E), and Auger production following impact ionization

(IE):

E
ee c K B IE
g+g’,L = ag+gC,L + ag+g(,L + ag+g~,L + ‘:+g~,L + ‘g+gt,L (1.15)

In the above equation, and in the remainder of this report, the group

indices for different particle species will be denoted with specific

symbols. N=dy, (g),(f),(h) denote electron groups, photon groups, and
positron groups, respectively. The symbol (k) will be used to denote

group indices irrespective of particle type.

The aggregate electron-to-photontransfer matrix includes

bremsstrahlung production (BP) and fluorescence production following

impact ionization (IF):

Ee7 ~BP
+ .:f,L

g+f,L = g+f,L (1.16)

The aggregate photon-to-photon transfer matrix includes incoherent

scattering (KN) and fluorescence production following photoionization

(PIF):

(1.17)

The aggregate photon-to-electron transfer matrix includes Compton

electron production (CO), photoelectric production (PE), pair electron

production (P-), and Auger production following photoionization (PIE).

The aggregate

pair positron

~fye co PE PIE P-
f+g,L = ‘f+g,L + af+g,L + af+g,L + af+g,L

photon-to-positron

production (P+):

r’YP

(1.18)

transfer matrix consists solely of

P+
‘fih,L ‘“f+h,L (1.19)

positron-to-positron transfer matrix includes collisionalThe aggregate

scattering (C), radiative scattering (B), and elastic scattering (E):

E::h, ~=a:+h, L +O:+h,L E~ +ah+h~,J (I.20)
t )

The aggregate positron-to-photon transfer matrix includes
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bremsstrahlung production (BP), fluorescence production following impact

ionization (IF), and annihilation radiation (ANN):

p~fL .p’L+a&L+aff& (1.21)
> ) ) )

The aggregate positron-to-electrontransfer matrix includes knock-on

production and (K) Auger production following impact ionization (IE):

(I.22)

1.6 AGGREGATE REACTION CROSS SECTIONS

The aggregate total reaction cross sections, It, also appear in the

coupled Boltzmann transport equations. The total cross section is one

of several reaction cross sections that can be specified for each

interaction. These reaction cross sections are denoted by ax,k where

the symbol X refers to the reaction type. The five different types of

reaction cross sections assembled by CEPXS are: total (at), absorption

(a=), secondary production (a~), energy deposition (aE), and charge

deposition (aC).

Multigroup reaction cross sections are calculated by CEPXS for each of

these reaction types. The multigroup reaction rate is:

ax,k#@ (I.23)

the reaction rate over all groups is:

K

I
ax,k #k(r) (I.24)

k=l

For instance, the energy (charge) deposition cross section can be used

to calculate the total energy (charge) deposition profile.

Total multigroup cross sections are defined as the probability per unit

pathlength that particles in a group interact. For scattering

interactions which are represented by the differential cross section,
as the total multigroup cross sections are:>

-13-



H‘k ~ E
dE’ a~(E+E’)

s ‘k+l ‘rein
%,k = AEk

where we have assumed that:

a~(E+E’) =0 forE’<E
min

Note that:

K
s

2

s
‘t,k = “k+k’,0

k’=1

only if Emin 1 %+1”

For absorption interactions which are represented by

A the total multigroupdifferential cross section, u ,

I‘k
dE aA(E)

E
A

k+l

‘t,k = hEk

Since particle production occurs in conjunction with

(1.25)

the non-

cross sections are:

(I.26)

either particle

scattering or particle absorption, the differential production cross

section does not contribute to the total reaction cross section.

The aggregate total multigroup cross sections calculated by CEPXS are:

Xe c B E
t,g = ‘t)g + ‘ttg + ‘t$g

(I.27)

~:h=xe

t,g
forh=g

)

where the macroscopic cross sections associated with collisional
scattering (C), radiative scattering (B), elastic scattering (E),

incoherent scattering (KN), photoelectric absorption (PA) and pair

interaction absorption (Pti) are identified. Note that the total cross

section for positrons is identical to the total cross section for
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electrons. In OEPXS, the same group structure is used for both

positrons and electrons.

In a scattering interaction, particles are not physically absorbed.

However, particles can be effectively absorbed if the scattered

particle’s energy is less than the cutoff energy. The effective

absorption multigroup cross section is defined as the number of

particles in a group that scatter into energies below cutoff, per unit

pathlength:

K

t7s
s

2

s
a,k = ‘t,k - ‘k+k’,0

k’=1

(I.28)

If the scattered particles never acquire energy less than the cutoff

energy (Emin > ~+1)~ the effective absorption cross sections are

identically zero.

For absorption interactions:

# A
a,k = %,k

(1.29)

The aggregate absorption multigroup cross sections calculated by CEPXS

are:

Ee =a:,g+a:g
a,g )

fl .O:f+~:f+J“
a,f

(1.30)

1P =~e for h=g
a,h a,g

Secondary production cross sections are defined as the number of

particles produced, per unit pathlength, due to particles in a group.

These reaction cross sections are defined only

interactions. If the differential production

by Op, the secondary production cross sections

k’=1

for production

cross section is denoted

are defined as:

(1.31)

The aggregate secondary production cross sections calculated by CEPXS

are:
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K BP IE IF
%)g =Us,g + ‘S,g + as,g ‘as,g

(I.32)

for the following production interactions: bremsstrahlung (BP), knock-
on (K), Compton electron (CO), photoelectron (PE), fluorescence

following impact ionization (IF) and photoionization (PIF), Auger

following impact ionization (IE) and photoionization (PIE), pair

electron (P-) and pair positron (P+), and annihilation (ANN).

Energy-deposition cross sections are associated with every type of

interaction. These ‘cross sectionsn are defined as the net energy

deposited in the medium due to the interactions of particles in a group

per unit pathlength. Such cross sections have units of energy per

distance. The energy-depositionmultigroup cross sections for a

scattering interaction could be calculated in the following fashion:

(1.33)

1$‘k ~
dE’ Ea~(E+E’) -

If

‘k ~
dE’ E’ a~(E+E’)

E
k+l ‘rein

E
Q k+1 %1+

%,k = AEk

However, in CEPXS, we chose to define an ‘ieffectivenmultigroup energy

deposition cross sections using the group mid-point energies:

(I.34)

k’=1

where:

E; is the midpoint energy of group k.

In the limit of increasing number of groups, the effective energy

deposition cross sections become equivalent to the energy deposition

cross sections defined by Eq. 1.33.

A production interaction involves the removal

-16-

of energy from the site of



the interaction. Hence, the effective energy deposition cross sections

for production interactions are:

K

ai,k= - >

P
‘k+k’,0 [)‘:‘

(I.35)

k’=1

Since an absorption interaction results in the deposition of energy, the

effective energy deposition cross sections for such interactions are:

A
[J

# n
aE,k= a,kE

(I.36)

energy

B
‘E,g +

co
‘E,f +

aE,h

deposition cross sections calculated by CEPXS are:

IE IF K BP
aE,g + aE,g + aE,g ‘aE,g (I.37)

PE PA PIF PIE PPA P- + ~P+

5E,f + ‘E,f ‘“E,f + aE,f ‘aE,f ‘aE,f E,f

for h=g

The “chargeH deposition cross sections are defined as the net number of

electrons deposited in the medium due to the interactions of particles

in a group per unit pathlength. A positive charge deposition cross

section corresponds to electron deposition while a negative charge

deposition cross section corresponds to electron removal.

For scattering and absorption interactions, these cross sections are:

s #
‘C,k =

a,kQ(k)

A ~A
‘C,k =

a,kQ(k)

where:

Q(k) = 1 if k is an electron group

= -1 if k is a positron group

= O if k is a photon group .

(I.38)

For production interactions, the charge deposition cross sections are:
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The aggregate

CEPXS are:

1.7 PARTICLE

(I.39)

K
P
‘C,k = - >

a[+k(,o Q(k’)

k’=1

multigroup charge deposition cross sections calculated by

c B K IE
%,g ‘Uc,g ‘“c,g ‘ ac,g+ac,g

~~ CO PE PIE
‘“c,f ‘“c,f ‘Uc,f (1.40)

c B K IE
$,h= ‘“C,g ‘UC,g ‘“C,g ‘aC,g forh=g

CONSERVATION

In order for particles to be conserved, the multigroup-Legendrecross

sections produced by CEPXS must satisfy:

Y“
L
a,k = ‘t)k + ‘S,k - ~ ‘k+k’,0

(1.41)

for all groups.

all k’

satisfied in any group, the number of

calculation will not be conserved, CEPXS

If the above equation is not

particles in a CEPXS/ONEDANT

will abort the calculation if the left-hand side of the above equation

differs from the right-hand side by more than .01 %. This check was

especially useful during the development of CEPXS to insure that new

interactions were added to the code in a consistent fashion.
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II. INELASTIC COLLISIONAL SCATTERING

AND KNOCK-ON PRODUCTION

II.1 THE BOLTZMANN-CSD EQUATIONS

The electron Boltzmann transport equation is not amenable to a standard

discrete ordinates solution. This is because an accurate multigroup

representation of the collisional cross section for electrons, ac) is

impractical. Since this inelastic cross section rapidly increases as

energy loss become small, an accurate multigroup representation would

require that an excessive number of narrow-width groups be used. This

would make the cost of a discrete ordinates solution exorbitant.

In order to use the multigroupapproach, an alternate treatment of

electron inelastic interactions is required. Inelastic interactions

(both collisional and radiative) can be divided into two classes:

‘catastrophicn interactions that result in large-energy losses and
nsoft” interactions that result in small-energy losses. Catastrophic

interactions are represented by macroscopic cross sections for which a

conventional multigroup treatment is practical.

A different approach is required for soft interactions. The cumulative

effect of many soft interactions can be approximated by the continuous

energy loss of an electron without angular deflection. This is the

restricted continuous slowing-down (CSD) approximation. In the context

of this approximation, the electron flux satisfies the Boltzmann-CSD

equation [BART]. If all inelastic interactions (both collisional and

radiative) are divided into soft and catastrophic events and the CSD

approximation is applied to the former, the coupled electron-photon

transport equations become:

n“v#e + E:#e = J dE’J dll’I:e(E’+E,fl’+fi)#e(E’,O’)

+—
[;E R:(E)#e(E,V]+ ~[R:(E)?e(w]

+ j dE’J dfl’E7e(E’+E,fl’+fl)#7(E’,fl’)

+ J dE’~ dll’Epe(E’+E,fl’+ll)#p(E’,ll’)

(11.1)

-19-



fl*V#~+ E~#7=J dE’~ dll’E77(E’+E,fl’+11)#7(E’,0’)

+ J dE’J dll’Ie7(E’+E,Wll) ~e(E’,fV)

+ j dE’J dO’ EP7(E’+E,MQ) ~p(EJ,fj~)

+ ~ dll’~dfl’X7p(E’+E,R’+fl)#7(E’,0})

where:

Z~e(E’+E,Ml) = The electron-to-electrondifferential cross
section that does not include soft inelastic
interactions

Ipp(E’+E,fl’+ll)= The positron-to-positrondifferential cross*
section that does not include soft inelastic
interactions

R:(E) = The restricted collisional stopping power
for electrons

R:(E) = The restricted radiative stopping power
for electrons

R:(E) = The restricted collisional stopping power
for positrons

R:(E) = The restricted radiative stopping power
for positrons

The Boltzmann-CSD transport equation can be derived from the Boltzmann

transport equation in a manner analogous to the derivation of the

Fokker-Planck transport equation [MOR2]. The term in the electron

Boltzmann-CSD transport equation that contains the restricted stopping

power (which will be defined later in this chapter) represents the

continuous slowing-down of the electron due to soft interactions.

Standard discrete ordinates codes like ONEDANT-LD are general Boltzmann

transport

There are

solvers that lack explicit representation of the CSD operator.

two ways to represent the restricted CSD approximation in
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ax,g=ox,g ‘ax,g

When appropriate CSD cross sections are defined, the solution of the

electron flux calculated by ONEDANT-LD is effectively the same as the

solution of the Boltzmann-CSD equation for electrons. Positron

inelastic interactions are treated in a similar fashion.

11.2 CATASTROPHIC COLLISIONAL SCATTERING

In CEPXS, inelastic scattering due to catastrophic collisions are

modelled by the Moller microscopic cross section, ~Cc. In contrast, ITS

uses a condensed-history (multiple-event)model to account for the

effect of inelastic collisions [BERG2]. Energy-loss straggling due to

collisions must be explicitly introduced into the ITS model. This is

not necessary in CEPXS since the differential Moller cross section

properly accounts for the energy distribution of the particles after a

catastrophic collision. However, since CEPXS uses the CSD approximation

for soft collisions, there is no energy-loss straggling for these

collisions.

One of the assumptions used in the derivation of the Moller cross

section is that the incident electron collides with a free atomic

electron (i.e. the binding energy of the atomic electron is neglected.)

The adequacy of this assumption depends on how the energy of the

incident electron compares to the binding energy of the atomic electron

with which it collides. For instance, if the incident electron’s energy

is on the order of the binding energy of the K-shell electrons, the

assumption of zero binding energy is inadequate for collisions with

these electrons. However, this assumption would still be adequate for

the collisions that involve the less tightly-bound electrons in the

outer shells.

After an inelastic collision, two electrons emerge. By convention, the

particle with the higher energy is considered to be the primary or

scattered electron. The other particle is considered to be the knock-on

electron. The differential Moller cross section determines the energy

(and angular) distribution of both the primary and knock-on electron.

The Moller cross section [ZERBY] can be written as differential in the

energy of the knock-on electron. The microscopic form of this cross

section (in units of cm= per reduced electron energy) per collision with

an atomic electron is:
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where:

1 1 1 (2’s+1)

~+ q+ 1 (II.4)
(T+1)2 - (T+1)2cTP

P

Kinetic energy of the incident electron in units of

(or electron rest mass units),

the scattered primary electron in

reduced energy

units ofKinetic energy of

reduced energy. TP varies from T/2 to T by definition,

Energy lost by the incident electron in units of reduced energy.

It is equivalent to the kinetic energy of the knock-on electron in

Since the knock-on energy is the differencereduced energy units.

between the energies T and TP, ~ varies from O to T/2,

the ratio of the electron’s velocity to the speed of light, and r.

is the classical electron radius defined in the glossary.

The macroscopic Moller cross section for a material is:

4P#A .[fl ~Adgml
eff

(II.5)

where the expression in brackets is defined in the glossary.

The angle, OP, at which the primary electrons emerge relative to the

direction of the incident electron is given by kinematics:

Pp =

These angles are highly

incident electron. For

can emerge is:

[p 1T (T+2) 1/2
Cos(ep) =

T(TP+2)

forward peaked relative to the

instance, the maximum angle at

2
sin20

max
.-

(11.6)

direction of the

which a primary

(II.7)

In ITS, Am is assumed to be uni~y and the angular deflection of the

primary e~ectron is accounted for by a modification to the nuclear

elastic scattering cross section [BERG2].

Because energy and angle are cinematically related, the Moller cross

section that is differential in both energy and angle is:
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(II.8)

The total cross section for a catastrophic collision is obtained by

integrating the differential cross section over all possible energies

and angles at which primary electrons can emerge. Because the Moller

cross section is singular at ~ = 0.0, this integration must be truncated

at a primary electron energy that corresponds to a non-zero knock-on

energy, ~==:

uP(T) = y-;ccdTpJdnp-p (11.9)

The energy, ccc, is the smallest energy that a knock-on electron is

allowed to have as a result of a catastrophic collision. Collisions

that produce primary electrons with energy less than T-~cc are called

catastrophic. The energy (~cc) is chosen such that, in catastrophic

collisions~ primary electrons appear in energy groups that are non-
adjacent to the energy group of the incident particle. For instance,

for an electron with energy (T) in group (g), ccc = T - T=+a. Hence,

Ecc depends on both the kinetic energy of the incident electron @ the

group structure. While the energy, ccc, cannot be less than the

smallest width of an electron energy group, it may be less than the

cutoff energy.

The restriction of catastrophic collisions to transfer between non-

adjacent energy groups is required to insure that, in a multigroup

formulism, ~cc is never zero. If scattering into adjacent energy groups

were allowed, e== would equal T-Tg+l. Since the kinetic energies of

electrons in a group can assume any value between T8 and Tg+l, e== could

assume the value zero if catastrophic collisions into adjacent groups

were allowed.

The total cross sections associated with catastrophic collisions are:

cc
‘t,g = A;g

(II.10)
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T T
g g+2 ducC(T,T )
dT dTp dT

T T/2 P
‘g+l

In order to calculate the multigroup transfer matrices associated with

catastrophic collisions, the group structure of the electrons must be

considered. For instance, in order for electrons in group (g) to

produce primaries in group (g’), the highest energy of the lower energy

group (T=() must exceed the minimum energy of a primary electron

(T=+l/2.) For a catastrophic collision that involves a single atomic

el~ctron, the expansion coefficients of the Lth-order transfer matrix

are:

FOR L = 0,1,...LMAX.

FOR g’ = g+2, g+l, ... G:

H
T T, d~cc(T,T )

t:~g~,L = ~
gdT g dTp H(ATP) ‘L(Pp) dT

g P
T ~
g+1 Max[ Tgt+l , z 1

where H(x) is a step function (see glossary)

[
ATp=Tg, - Max Tg,+l

(11.11)

whose argument is:

~
‘2 1

and

The

are

LMAX is the maximum order of the Legendre expansion.

terms of the macroscopic transfer matrices for inelastic scattering

related to the terms of

*cc
g+g’,L =

the microscopic transfer matrices by:

(II.12)

Other reaction cross sections can be defined for inelastic collisions.

The effective absorption cross sections due to catastrophic collisions

are:

~cc cc 2 ~cc

a)g ‘“t,g - g+g’ ,0
(II.13)

g’>g
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The effective absorption cross section due to catastrophic collisions

that involve incident electrons in group (g) is zero unless lowest

primary electron energy (T=+l/2) is less than the cutoff energy.

The effective energy deposition cross sections due to catastrophic

collisions are:

cc CC ~m

2

~cc
‘E,g ‘Ut,g g -

E:,
g+g’,o

g’>g
(II.14)

while the charge deposition cross section due to catastrophic collisions

are:

cc ~cc
‘C,g= a,g (II.15)

11.3 KNOCK-ON ELECTRON PRODUCTION

Knock-on electrons are defined to be the least energetic electrons that

emerge following an inelastic collision. In both ITS and CEPXS, the

minimum energy that a knock-on electron can possess is the cutoff energy

(TG+l) ●
Both codes use the Moller cross section differential in the

knock-on energy to obtain the energy distribution of the knock-on

electrons. However, the energies of the primary and knock-on electrons

are not correlated (i.e. are not cinematically related) in ITS since the

Moller cross section is not used to determine the energy distribution of

the primary electrons.

A greater degree of correlation exists in CEPXS. Most of the primary

electrons scattered in a catastrophic collision will be correlated in

energy with a knock-on electron. However, the extent of this

correlation is limited by the electron energy domain that is selected by

the user of the code. For instance, if ~cc is less than the cutoff

energy, not every primary electron scattered in a catastrophic collision

is associated with a knock-on electron.

An energy correlation does not exist between knock-on electrons and

electrons that lose energy as a result of soft collisions. This is

because, in the CSD approximation, individual soft collisions are not

resolved. Nonetheless, if e== is greater than the cutoff energy, those

knock-ons that are generated with energy between TG+I and e== must be

associated with soft collisions, even if a direct energy correlation is

absent.



The Moller cross section neglects the binding energy of the atomic

electrons. Since the impact ionization cross section depends on these

binding energies, the relaxation radiation that is produced from impact

ionization will not be correlated with electron energy loss in either

CEPXS Or ITS.

The angles at which the secondary electrons emerge are derived from

kinematics. Like the primaries, such secondaries emerge in forward

directions relative to the direction of travel of the incident electron.

However, the angular distribution of the knock-ons is not as forward

peaked as that of the primaries. The knock-on electrons emerge at an

angle, e-, relative to

P5 =

The microscopic Moller

knock-on electron, (K,

electron is given by:

the incident electron’s direction:

COS(05) = [1e(T+2) 1/2

T(e+2)
(II.16)

cross section differential in the energy of the

associated with a collision with an atomic

_@=dJK_&_p5]
s

(II.17)

In order for electrons in group (g) to produce knock-on electrons in
group (g’), the lowest energy of the lower energy group (T~c+l) must not

exceed the maximum knock-on energy (Tg/2.) The expansion coefficients

of the Ltih-order transfer matrix for knock-on electron production are:

FOR L = 0,1,...LMX.X

FORg’ = g+2, g+3, ... G :

Tg

I [Min Tg, , ~
1 d(K(T,e)

dT d~ H[h~] pL(#s) d~
Tg+l Tg’+1

(II.18)

where the argument of the step function is:

Ae
[

= Min T
1

~_T
13”2 g’+1
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The macroscopic transfer matrices for knock-on production are:

(11.19)

The effective energy

production are:

deposition cross sections due to knock-on

K

>

~K
aE,g = -

Em
g+g’,o g’ (II.20)

g’>g

The charge deposition cross sections due to knock-on production are:

K
ac,g= -

while the secondary production

K
“S,g

g’>g

cross sections

(11.21)

due to knock-ons are:

(H. 22)

Knock-on production will not contribute to either the total or the

absorption reaction rates.

11.4 SOFT COLLISIONAL SCATTERING

In CEPXS, the definition of a soft collisions depends on the multigroup

energy grid. In a soft collision, a scattered electron appears in the

energy group that is adjacent to the group associated with the incident

electron. CEPXS does not model soft collisions with a single-event

cross section since a multigroup representation of such a cross section

is not feasible. Rather, the restricted CSD approximation is used for

soft collisions. Hence, energy-loss straggling is not associated with

soft collisions.

The expansion coefficients for the Lth-order

with the first-order difference form of the

[MOR2] are:

transfer matrix associated

restricted CSD operator
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FORL = 0,1,...LMAX

FOR g = 1,2,...1.1:

#c
~+g’,L = 8

E; - E:, g’(g+l)
(II.23)

where:

Rc = Restricted collisional stopping power,

and

E: = Midpoint energy of the group g.

In a soft collision, an electron is assumed to slow down without angular

deflection. The angular distribution associated with the CSD cross

sections is the delta function, ~(p-1), which must be represented by a

truncated Legendre expansion in CEPXS:

~sc ~sc
FOR L=O,l, ...LMAX

g+g’,L = g+g’,0 (11.24)

In a discrete ordinates calculation, such a truncated representation of

the delta function will cause artificial or numerical dispersion of the

particles unless the proper quadrature set is chosen [MOR2] by the user

who runs ONEDANT-LD. The proper quadrature set must be either Gaussian

or Galerkin [MOR5], and must be of order LMAX+l.

The expansion coefficients of the Lth-order transfer matrix associated

with the second-order (diamond-differenced)form of the restricted CSD

operator [MOR3] are:

FOR L= 0,1,...LMAX

FORg= 1,2,...1.1:

(_l)13
[

‘-g+l 2 Rc(Eg,) + “(Eg{+l)~sc Ig+g’,L = AEg

(-1)
[

G-g+l z RC(EG) + SC(EG+l)

AEg
1=

(II.25)

IFG>g’>g

IFg’=G



= O OTHERWISE

Note that the second-order CSD cross sections can be negative. This is

possible since these cross sections do not have a microscopic

counterpart. (While discrete ordinates codes can accept negative cross

sections, such cross sections are not compatible with multigroup Monte

Carlo codes.)

The effective absorption cross sections due to soft collisions are:

I
~sc = o

IFg=l,2, ... G-1
a,g

[J
. RC ~m

~st
order IFg=G

E:-E
u

(II.26)

{

USC =
~nd a)g

(-l)G-g 2 SC(EG+l)

order FOR g=l,2,...G
AE
g

where EU is an arbitrary energy that is less than the cutoff energy

[MOR2].

The total cross sections for

~st
{

Sc JJc .
order

%,g = a,g

2
nd

1

Sc ~sc ,
order

‘tjg = a,g

soft collisions are:

~sc
g+g+l,0

2
~Sc

g%’ to

&!(>g

The energy deposition cross sections due to soft collisions are:

I
Sc

St aE,g = 0
IFg<G

1 order #C Em= IFg=G
a,g g

2
nd

1

Sc SC Em

2

~sc
order

m
‘E,g = %)g g - g+g’,o ‘g’

g’>g

(II.27)

(II.28)

These energy deposition cross sections are non-physical to the extent

that they cannot be used to determine the amount of energy deposited by

soft collisions involving electrons in a group (cf. Eq. 1.23.) However,



(II.29)

they can be used to determine the total energy deposited by soft

collisions involving electrons in all groups (cf. Eq. 1.24.)

The charged deposition cross sections for soft collisions are:

Sc #
‘C,g= a,g

11.5 THE RESTRICTED COLLISIONAL STOPPING POWER

In order to const_rructthe CSD cross sections_described in the previous

section; the restricted collisional stopping power must be known.

In the first-order scheme, the restricted stopping power must be

evaluated at the midpoint energies of all electron groups except the

last. The restricted collisional stopping power is defined as that

portion of the total stopping power that is not due to catastrophic

collisions:

FORg= 1,2,...1.I: (II.30)

2T

H
T

g g+2 docc(T,T )
RC(E;) = SC(E:) -~ dT dTp H(ATP) (T-TP) dT

g P
T T/2g+l

the total collisional stopping power (in uriitsof MeV-

generally derived from Bethe theory [ICRU]. These total

where So(E) is

cm2/g) that is

stopping powers are contained in the electron data set, DATAPAC [ETRAN]

for each element from 1.0 GeV to 1.0 keV. The stopping power for a

compound can be constructed with the aid of a density effect formulism

discussed in the next section.

The restriction that the cutoff energy in both CEPXS and ITS cannot

extend below 1.0 keV is due to the lack of stopping power data (as well

as electron elastic scattering data) for arbitrary materials below one

keV. Even for electron energies that exceed one keV, the Bethe stopping

power theory can be inadequate in high-Z materials. Theoretical models

of the stopping power at low energies must account for effects neglected

in Bethe theory such as the inelastic scattering of electrons from

conduction electrons, inner atomic electrons, and plasmons [SHIM].

Since the definitions of catastrophic and soft collisions are dependent

on group parameters, the restricted stopping power that is calculated by

CEPXS is also dependent on the electron group structure. As shown in



Fig. 1, the share of the total collisional stopping power that is

associated with catastrophic collisions increases as more groups are

selected. This is because the energy, e==, that demarcates catastrophic

and soft collisions decreases as the number of groups increases.

However, the figure indicates that soft collisions dominate collisional

energy loss even when an excessive number of electron energy groups

(160) are employed. Indeed, very many electron groups would be needed

to make the collisional stopping power due to catastrophic collisions

comparable to the total stopping power. This is another way of stating
the previously mentioned assertion that an excessive number of groups

would be required to accurately represent a single-event inelastic

collisional cross section. In CEPXS, we are able to accurately

calculate the energy loss of an electron due to inelastic scattering

with only a modest number of groups (E 40) because the restricted CSD

approximation is used to represent the energy loss that is due to soft

collisions.

Both the total stopping power and the restricted collisional stopping

power are defined to be positive. That is, a positive stopping power

denotes the loss of energy per pathlength travelled. However, the

restricted stopping power can become negative for low electron energies

in high-Z materials if the total stopping power is derived from the

Bethe theory. This is because the assumptions that are used to derive

the Bethe stopping power are inadequate for low electron energies in

high-Z materials. As shown in Fig. 2, the Bethe stopping power reaches

a maximum value above one keV in tungsten. More accurate theoretical

predictions [DEVA] indicate that the stopping power for electrons in

tungsten is greatest for electrons with energy less tihanone keV.

In CEPXS, the Bethe stopping power is “correctedn at low energies in

high-Z materials. (Comparable correction is not done inITS.) Since

a general formulism for electron stopping powers in arbitrary materials

at low energies is not available (only ad hoc theoretical predictions

are possible), a variety of empirical corrections have been proposed.

In one such method, a parabolic extrapolation is applied to the stopping

power at energies below the inflection point in the curve of stopping

power versus energy [RAO]. In CEPXS, we employ a power-law

extrapolation of the Bethe stopping power for each element below the

arbitrarily selected energy of 10 keV:

SC(E) = SBethe(E) for E > 10 keV

SC(E) = S‘ethe(10 keV) [ w ]x for Es 10 keV



~(log S(E))
where x = - a(log(E)) E = 10 keV

(II.31)

As shown in Fig. 2, this power-law extrapolation is in reasonable

agreement with the stopping power in gold predicted by the more accurate

theory. However, the Bethe stopping power is still adequate for lower-Z

materials (Fig. 3.) The extrapolation exponents that are used in CEPXS

are shown in Fig. 4 for all elements.

In order to evaluate the cross sections for the second-order difference

form of the CSD operator, the restricted stopping power must be

evaluated at all group boundaries except the upper boundary, El, and the

lower boundary, EG+l. Since a boundary energy is both the top of one

group and the bottom of another, there is some ambiguity as to how a

catastrophic collision is to be defined for an electron whose energy is

the same as that of a group boundary. For instance, if E= is considered

to be the upper boundary of group (g), a catastrophic collision would

produce primary electrons with

interpretation, the restricted

is:

FOR g=2,3, ... G-1:

energies less than E=+2. With this

collisional stopping power at energy E=

1
dacc(T ,T )

2 ‘g+2 dT
#(Eg) = Se(Eg) - mec p H(ATP) (Tg-Tp) dTR (II.32)

P
Tg/2

and

~(EG) = o

On the other hand, if E= is considered to be the lower boundary of a

group:

FORg =2,3, ...G.

f(Eg)=I$Jc(Eg)- mec2

In order to remove this

(II.33)‘g+l dT H(ATP) (Tg-Tp)
P

Tg/2

ambiguity, we consider the restricted

collisional stopping power at a group boundary to be the average of

these two formulations:



FORL = 0,1,...LMAX.

FORg=2, ...G.

Rc(Eg) = ~ [ $(Eg) + f(Eg) ] (II.34)

11.6 THE DENSITY EFFECT CORRECTION

Both ITS and CEPXS apply a density effect correction to the collisional

stopping power. The density arises from the self polarization of the

medium by the electron it effectively reduces the collisional stopping

power:

Sc(E) = SC(E) - (5(E)

where d is the density effect correction (in units of MeV-cmZ/g) and SC
is the uncorrected stopping power. The density effect correction

becomes most pronounced at high electron energies. For instance, in

water, the density effect correction becomes significant above one MeV

as shown in Fig. 5.

The stopping powers of a compound can be constructed from the

uncorrected stopping power of its constituent elements by:

Sc
mol(E) =

Z Wi ~f(E) - ~mol(E) (II.35)
i

if ~mol, the density effect correction for the compound, is known.

A formula for the density effect correction for an arbitrary material

was devised by Sternheimer [STERN]. Both ITS and CEPXS use this

formulism:

22

8(T) =
2rrONAmec

P2
[~eff D(T)

where:

D(T) = 0.0 I-.Fx<xo
3

= 4.606*X + C + B*(Xl-X) mxo<x<x~

= 4.606*X + C IFx>xl

X= LOGlo(P/met)

(II.36)



1/2
P = electron momentum, P/mec = [2T + T2]

The parameters B and C are material dependent. For instance:

C = -2Log(~/hvp) - 1 ,

where: (II.37)

hv~ = Planck’s constant times the plasma frequency in eV units

= 28.8
[p [aeff ]1’2 )

and

I = Effective mean ionization energy

=Z ( 9.76 + 58.8Z‘1”19) for Z >

in eV units .

12,

= Exp
[2 ~LOg(li)/ [~eff ] ‘or a compound

i

For a few elements (Z s 12), the mean ionization energy is tabulated in

CEPXS.

The parameters, ~ and Xl depend on whether the material is a

solid/liquid or a gas:

For a solid/liquid:

1~100eV#X1=3.0

‘o =
- .326C - 1.5 IF -C~5.215

= .2 OTHERWISE

Z<100eV*X1=200

Xo=- .326C - 1.0 IF -C~3.681

= .2 OTHERWISE

For a gas:

-CL 13.8044X1 =5.0, XO=-.326C - 2.5

13.804 > -C~12.250 #X1 =5.0, XO=2.0

12.250 > -C~ 11.500+X1 =4.0, XO=2.0

11.500 > -c~ ll.OOO*X1 =4.0, Xo= 1.9

35



11.000 > -C~ 10.500*X1 =4.0, Xo= 1.8

10.500 > -C>lo.OOO+xl =4.0, Xo= 1.7

10.OOO > -c 4 xl =4.0, XO=l.6

The parameter, B, is:

- C -4.606X0

‘= [X1-XO]3
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III. INELASTIC RADIATIVE SCATTERING AND

BREMSSTRAHLUNG PRODUCTION

Electrons can interact with both the electric field of the nucleus, and

the electric field of the atomic electrons, to produce bremsstrahlung

radiation. As was the case for inelastic collisions, CEPXS considers

radiative energy loss to be of two different types: soft and

catastrophic. While the bremsstrahlung cross section is used to

characterize catastrophic events, soft radiative energy losses are

treated by the restricted CSD approximation

111.1 THE BREMSSTRAHLUNG CROSS SECTION DIFFERENTIAL IN ENERGY

The bremsstrahlung production cross section is differential in both the

energy and the emission angle of the photon. In CEPXS, this cross

section is separated into a cross section that is differential in energy

and a normalized differential angular distribution. The bremsstrahlung

angular distribution is discussed in Section 111.3. The bremsstrahlung

cross section differential in energy that is used by CEPXS was devised

by Berger and Seltzer [BERG1]. This bremsstrahlung cross section is

assembled from a variety of Born approximation cross sections. It also
includes empirical correction factors. ITS uses a more complex set of

bremsstrahlung data. However, the same bremsstrahlung cross section

that is used in CEPXS can be obtained in ITS if the SIMPLE-BREMS option

is invoked by the user of ITS.

The macroscopic form of the bremsstrahlung production cross section

differential in energy (in units of cm2/g per reduced energy) that is

suggested by Berger and Seltzer (for a single element) is:

!k?E&l = cr(T) fe(T,e)
[
~3@@ + [ a3BS(T)@ - a3BNb(T,@ ]

+ w (T)
[
a3cS(T;e) - a~~s(w) ]

1
(111.1)

where:

T = The energy of the incident electron

e = The energy of the emitted photon in

fe is a material-dependent screening parameter, the Elwert factor:

in reduced energy units,

reduced energy units,
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-arz/187/9(T)] ,
fe(T,@ = g(T) / g(T-e) where g(T) =~(T) [ l-e

cr(T) is an empirical correction factor that is tabulated for each

element in DATAPAC, and

w(T) is a weighting parameter:

f 1.0 IFT~

w(T) = PT-8)(T-2)
2016

50

(T-50)[T-2)
504

IF2.0<T<50.O ,

1 0.0 IF T~2.O

The microscopic differential cross seCtiOns, 03BN, a~Bs, ~~BNb, and sacs

are described by Koch and Motz [KOCH].

Note that the Elwert factor becomes infinitely large for radiative

events in which the photon emerges with all of the incident electron’s

energy (~(T-c)+O.) Hence, the Elwert factor is meaningless in the limit

of the high-frequency tail of the bremsstrahlung distribution.

Because bremsstrahlung is primarily due to interactions with the

electric field of the nucleus, the bremsstrahlung production cross

section for a compound is given by:

~BP=

2

w.~BP
11

i

rather than by a form analogous to Eq. 11.12. One consequence of this

is that when CEPXS constructs the multigroup-Legendre cross sections for

a collection of materials, bremsstrahlung transfer matrices must be

calculated separately for each unique element in that material

collection.

The a~Bs cross section (Born

following form:

approximation with screening) has the

1[#~(7) log z 2TS ~2(7) log z
—_

4
—_

3 -m 4 3

(1

where the screening factors #l and #a are defined as:

:.2)



2

h (’Y)= 20.867 - 4.4097 + 1.1567

2

#a(7) = 20.209 - 2.6257 - .1597

+1 (7) = 19.83 -4.18410g (7+ .7)

#2(7) = #1(7) ~ 7>.735,

where:

T= = The kinetic energy of

reduced energy units,

IF7< .735,

IF7< .735,

IF7> .735 ,

7. 100 e

TTs Z1/3

the electron after radiative emission in

and the coefficient is given by:

Z (Z+l) r:
c =

137 “

Bremsstrahlung production from interaction with the electric field of

the atomic electrons is accounted for in CEPXS by using Z(Z+l) in the

expression for the coefficient rather than Z2. (Radiative emission in

the field of the atomic electrons is accounted for in a similar way in

ITS.)

The aaBN cross section (Born approximation with no screening) assumes

the following form:

4

[1

p: + p2 xTs 1ST Xsx ,L q
--2TT
3

+— +— +—
s

—+

P:P2 P3 P: P Ps 3pp
s

~2(T2T~ + p2p~) c
+—

P3P: 2pp
s

(111.3)
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where:

P = (the momentum of the

P = (the momentum of the
s

2 1/2
incident electron)/mec = [T(T+2)] ,

2
scattered electron)/mec ,

x= Log(~] ‘

and

[

TTs+pp-1
L=2Log s

e 1
The a~B~b cross section (Born approximation, no screening, and non-

relativistic) has the following form:

‘a3BNb(T,e) 4c

[

~-~][Log[2~Ts)-~]
de ‘~ l+T2 (III .4)

and the cross section, a3cg, (Coulomb correction with screening) can be
expressed as:

[[ 1[‘g3cs = 4C ~ + T: #l(7) LOK~z~ -f(Z)

1[2TS #2(7) LoE(i?)_f(Z)
— _

de T 34 3
_—— _

3T 4 3
1]

(III.5)

where:

[

f(z) =$2 - + .20206 - .0369~2 + .0083$4 - 0.002$6
1+<2 1

and $ = Z/137.

111.2 CATASTROPHIC RADIATIVE SCATTERING

In CEPXS, catastrophic radiative scattering is modelled by the

bremsstrahlung production cross section rewritten as acB, a cross
section that is differential in the energy of the scattered electron.



Electron slowing down due to soft radiative scattering is modelled by

the restricted CSD approximation.

Like the Moller cross section, the bremsstrahlung cross section of Eq.

111.1 becomes singular as the energy of the secondary particle produced

(the photon) goes to zero. Hence, as for the Moller cross section,

some low-energy cutoff must be employed on the integration of the

bremsstrahlung cross section over photon energy. However, unlike the

Moller cross section, the bremsstrahlung cross section could be applied

to all radiative energy transfers [BART]. In CEPXS, the restricted CSD

approximation for soft radiative events is used because it is somewhat

more efficient (i.e. an accurate solution can be obtained with fewer

electron groups.) Hence, energy-loss straggling is implicit only for

catastrophic radiative events. Since all radiative events are modelled

with a microscopic cross section in ITS, energy loss-straggling is

entirely implicit in ITS.

As in ITS, CEPXS assumes that the incident electron does not undergo

angular deflection as a result of bremsstrahlung emission. Hence the

scattering cross section, uCB} for catastrophic radiative interactions

that is differential in the energy of the scattered electron is:

daCB

— = %CB 2 %- ‘“o)dTsdfl
s s

(111.6)

where p~ is the cosine of the angle of scatter of the electron relative

to its initial direction.

The total cross section associated with catastrophic radiative emission

is obtained by integrating Eq. 111.6 over all photon energies. Because

the bremsstrahlung cross section is singular at zero photon energy, this

integration must be truncated at a scattered electron energy that

corresponds to a non-zero photon energy) ~cb. In the high-frequency

limit in which the photon energy is comparable to the incident

electron’s energy, the Elwert factor goes to infinity and the Koch and

Motz cross sections go to zero. As suggested by Berger and Seltzer, the

bremsstrahlung cross section of Eq. 111.1 should not be used when

energy of the bremsstrahlung photon is nearly the same as that of

incident electron. They recommend that some high frequency limit

the bremsstrahlung cross section, based on theory and experiment,

used instead.

the

the

for

be

Rather than adopting some alternate formulism for the bremsstrahlung

cross section in the high-frequency limit, we chose to truncate the

integration of the bremsstrahlung cross section in CEPXS at a maximum
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photon energy, 6mU. The maximum photon energy that is allowed in 0EPX8

is arbitrarily set to be one keV less than the energy of the incident

electron.

The total cross section associated with catastrophic radiative emission

is:

dacB(T,Ts)
a~B(T) =

\

T-E
cb dTs

T-E
dT

max s
(III.7)

In CEPX8, a catastrophic radiative event is defined to be one in which

an electron down-scatters in energy into non-adjacent energy groups.

For an electron of energy (T) in group (g), the maximum energy that an

electron can have after a catastrophic radiative event is T=+2. Hence,
the lower photon energy cutoff for catastrophic radiative emission is

~cb = T - Tg+z.

The total multigroup cross sections for catastrophic radiative emission

are:

OB
‘tjg =4

T

J

T
g g+2 dacB(T,Ts)

dT dT
T T-e

s dT
g+1 max

s
(III.8)

The expansion coefficients of the transfer matrices for catastrophic

radiative emission are:

FORL =0)1, ...LMAX

FOR g’ =g+z, g+l, ... G:

I
T

#B ~ ‘dT
g+g’,L = LT

gT
g+l

The effective absorption cross

emission are:

/B CB
a,g ‘%,g -

‘T ~#B
g’ dT

Sq
Tg’+1

(III.9)

sections due to catastrophic radiative

(III.10)

g’>g

The effective energy deposition cross sections for scattering by

42



catastrophic radiative emission

CB CB m
aE,g ‘%,gEg -

are:

>

~CB
E:,

g+g’,o

g’>g

(111.11)

while the charge deposition cross sections for catastrophic radiative

emission are:

CB #B
‘cjg = a,g (III.12)

111.3 BREMSSTRABLUNG PRODUCTION

In CEPXS, the cross section for bremsstrahlung photon production is

separated into a cross section that is differential in the energy of the

photon and into a normalized differential angular distribution:

(III.13)

where p is the cosine of the emitted photon relative to the direction of

the electron prior to radiative emission.

The Sommerfield angular distribution of bremsstrahlung photons [SANDYL]

is used in CEPXS:

m&ll=L#$&.a= 1 -b2

4m (1-pp)2
(111.14)

As the energy of the incident electron increases (/?+1),the

bremsstrahlung angular distribution becomes increasingly forward peaked.

In order for electrons in group (g) to produce photons in group (f), the

maximum energy for an electron in the group (T=) must exceed the lower

energy boundary of that photon group, ~f+l. The expansion coefficients

of the transfer matrices for bremsstrahlung emission are:
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(III.15)

FOR

FOR

L = 0,1,...LMAX:

PHOTON GROUPS f = 1, 2, ... F:

~PB

II

~ ‘g ~T
Min

[ ~f) ~m= 1
de H [Ae] WL(T) ~)g+f,L = AT

g Tg+l ‘f+l

where the argument of the step function is:

Most bremsstrahlung photons are correlated in energy with electrons that

are scattered in catastrophic radiative events. However, if ecb exceeds

‘F+l} those photons with energy less than ecb are associated with soft

radiative emission. As was the case for soft collisions, soft radiative

energy losses are not correlated in energy with the production of

secondary particles. The energy domain that the user defines for the

calculation can also impact the extent of the energy correlation for

catastrophic events. For instance, if ecb is less than the cutoff

energy, electrons can lose energy in a catastrophic radiative event

without the appearance of bremsstrahlung photons in any photon energy

group.

The moments of the normalized angular distribution for the

bremsstrahlung photons:

J

1
WL(T) = 27 _l ‘L(P) ‘(T,P) dp ,

are evaluated in recursive fashion in CEPXS:

WO(T) = 1.0

2P + (1-~2) Log (
WI(T) =

2p2

WL(T) =
(2L-l)WL_l - (L)flL_2

(L-1)/l

(111.16)

increases (~+1), theNote that as the energy of the incident electron

Legendre moments of the bremsstrahlung angular distribution become

increasingly like those of a delta function. For low-energy electrons,

the bremsstrahlung distribution is close to being isotropic and it is
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sufficient to calculate only a few moments of the distribution. In

CEPXS, when the expansion given by Eq. 111.16 yields a ratio of WL/Wo

less than .0001, the higher-order Legendre moments (L+1,L+2,...LMAX) are

not evaluated but are set equal to zero.

In CEPXS, the calculation of the transfer matrix for bremsstrahlung

production is simplified by the assumption that all the electrons in a

group emit bremsstrahlung with the same angular distribution:

WL(T)
E ‘L(T;)

The effective energy cross sections due to bremsstrahlung production

are:

BP

2

BP
aE,g = - ‘g+f,o ‘;

(111.17)

f

while the secondary production cross sections due to bremsstrahlung

production are:

BP

2

BP
‘s)g = ‘g+f,o

f

(III.18)

The production of bremsstrahlung radiation does not contribute to total,

absorption, or charge deposition reactions.

111.4 SOFT RADIATIVE SCATTERING

The restricted (33Dapproximation is used to characterize soft radiative

energy losses. As was the case for soft collisions, soft radiative

emission results in the down-scatter of an electron into the adjacent

energy group. Energy-loss straggling is not associated with soft

radiative emission.

Soft radiative events are represented in CEPXS by “pseudon cross

sections that are similar in form to those in Section 11.4. These cross

sections represent the difference form of the restricted CSD operator.

Multigroup-Legendre matrices for electron-to-electrontransfers due to

soft radiative events can be constructed from these CSD cross sections.

The expansion coefficients of

order difference form of the

the matrices associated with the first-

restricted CSD operator [MOR2] are:
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FOR L = 0,1,...LMAX.

FOR g = 1,2,...1.1:

where RB is the

E; is the

#B = RB(Em)
g+g’,L IF g’ =g+l

E; - E;,

restricted radiative stopping power, and

midpoint energy of group g.

(111.19)

In the CSD approximation, the electron slows down without angular

deflection. This delta function scattering is represented by a

truncated Legendre expansion:

FOR L = 0,1,...LMAX.

FORg= 1,2,...1.1:

=SB
= o:g,,o IF L~LMAX

g+g’,L (III.20)

The expansion coefficients of the Lth-order transfer matrix associated

with the diamond difference form of the CSD operator [MOR3] are:

#B
[

~_l)g’-g+l 2 RB(Ego
+ RB(Eg,+l) 1

IFG>g’>g
g+g’,L = AEg

(111.21)

~-l)G-g+l
2[ RB(EG) + SB(EG+l)

1
FORg’ =G=

AE_

= O OTHERWISE

The effective absorption cross sections due to soft radiative emission

are:

[

#B GO
IFg=l,2, ...G-1

ajg

~st
[RI

= RB Em
order

IFg=G
E:-E

u
(III.22)



[

#B =
~nd a,g

(-l)G-g 2 SB(EG+l)
order FORg= 1,2,...G

AEg

where EU is the midpoint energy of the fictitious energy group

constructed below the cutoff

The total cross sections for

~st
{

SB *SB +
order at,g = a,g

2
nd

[

SB #B +
order

‘tjg = a,g
I

energy, TG+l.

soft radiative

#B
g+g+l,0

2
~SB
g+g’,o

emission are:

(III.23)

1 g ‘>g

The energy deposition cross sections due to soft radiative emission are:

I
SB
aE,g = 0

IFg~G
1
St

order
#B Em= IFg=G
a,g g

(III.24)

Znd

[

SB #B Em _

>

#B m
order

‘E,g = t)g g g+g’,o ‘g’

1 g’>g

while the charge deposition cross sections for soft radiative emission

are:

SB
= OSB

‘C,g a,g
(III.25)

111.5 THE RESTRICTED RADIATIVE STOPPING POWER

In order to evaluate the CSD cross sections for soft radiative emission,

the restricted radiative stopping power, R=, must be calculated. For

the cross sections that correspond to a first-order difference form of

the restricted CSD operator, the restricted radiative stopping power

must be evaluated at the midpoint energies of all electron groups except

the last. The restricted radiative stopping power is defined as that

portion of the total radiative stopping power that is not associated

with catastrophic energy loss:
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FOR L = 0,1,...LMAX.

FORg= 1,2,...1.1:

2
mc

RB(E;) = SB(E:) - ~

g
I

where SB(E) is the total

cm2/g).

T
g dT

[

‘g+2 dT
s

radiative stopping

(T-T~)

(III.26)

dacB(T,Ts)

dT
s

power (in units of MeV-

As shown in Fig. 6, the magnitude of the stopping power associated with

catastrophic radiative loss is comparable to the total radiative

stopping power even when few electron groups are used. With 160

groups, the stopping power that is due to catastrophic radiative energy

losses is nearly identical to the total radiative stopping power. This

is quite different from the case with collisional scattering (cf. Fig.

1.) The large share of the radiative stopping power due to catastrophic

radiative energy losses is consistent with our earlier assertion in

Section 3.2 that the single-event bremsstrahlung cross section is more

amenable to a multigroup representation than is the single-event cross

section for collisions.

In order to evaluate the cross sections that represent the second-order

difference form of the restricted CSD operator, the restricted

radiative stopping power must be evaluated at all electron group

boundaries except the upper boundary, El, and the lower boundary, EG+I.

As was the case with the restricted collisional stopping power, two

different interpretations are possible for the restricted radiative

stopping power at a group boundary energy. If E= is considered to be

the upper boundary of group, then the restricted radiative stopping

power is:

FORg =2,3, ... G-1:

I
dacB(T ,T~)

#(Eg) = SB(Eg) - mec2
‘g+2 dTs (Tg-Ts) dTg (III.27)

T -e
s

g max

and:

#(EG) = O

On the other hand, if E= is considered to be the lower boundary of a

group, the restricted radiative stopping power is:
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FORg =2,3, ...G.

I2 ‘g+ldT~ (Tg-T~)
#(Eg) = SB(Eg) - meC

(III.28)
s

T -eg max

To avoid ambiguity, the restricted radiative stopping

boundary is defined to be the average of the previous

FORL = 0,1,...L~.

FOR g = 2,3,...G.

RB(Eg) = ~ [ #(Eg) + ~ (Eg) ]

power at a group

two formulations:

(III.29)



IV. ELASTIC ELECTRON SCATTERING

Both the CEPXS and ITS codes use the same cross section for the elastic

scattering of electrons in the nuclear field of an atom. For electrons

with relativistic kinetic energies (> 256 keV), both codes use the Mott

cross section with Moliere screening. At non-relativistic energies, the

elastic scattering cross section data developed by Riley et. al. [RILEY]

is used instead.

In ITS, the nuclear elastic scattering cross sections are modified to

account for inelastic deflections. This is accomplished by multiplying

the nuclear elastic scattering cross section at the angles 6 ~ Omu by

the ratio (Z+l)/Z. The angle 6mti is the maximum angle of deflection of

an electron by an inelastic collision (see Chapter 11.2.) This is not

done in CEPXS since angular deflections associated with catastrophic

collisions are correlated with energy loss through the Moller cross

section.

In ITS, the elastic-scattering cross sections appear in the context of a

condensed-history model, the Goudsmit-Saundersontheory of multiple-

scattering. In CEPXS, elastic scattering is based on a microscopic

cross section. However, this highly forward-peaked elastic-scattering

cross section is modified by the extended transport correction. This

approximation makes the elastic-scatteringcross section amenable to a

low-order Legendre expansion.

IV.1 THE MOTT CROSS SECTION WITH MOLIERE SCREENING

For an element, the macroscopic Mott cross section with Moliere

screening in units of cmS/g is: [BERG2], [ZERBY]

duE(T,O) C(T)

[

1/2

dll 1 + =(T) (1-cos6+2v(T)]
= [1-cos6+2q(T))2

+ h(O,T)
1

(IV.1)

where:

T = The kinetic energy of the electron in reduced energy units,

22
2rrONAz

(T+1)2
C(T) = *

T2(T+2)2 ‘
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1/2
h(6,T) =D(8,T) - 1 - ~ x(T) [1 - COS6 + 2q(T)) ,

42 137

[ [)

2
.25 Z2/3 1.13 + 3.76 &137

(T+1)2 T-l (T+2)-11q(T) =
(.885 * 137)2 T (T+2)

~

The function, x(T) is tabulated at discrete energies on the DATAPAC data

tape for electrons [ETRAN]. The function, D(6,T), represents the ratio

of the Mott cross section to the Rutherford cross section at a given

energy and angle of scatter. This function is also tabulated on the

DATAPAC data tape at discrete energies and at the discrete angles: O =

O, 45°, 90°, 135°, 180°.

The Lth-order transfer matrix for elastic scattering consists only of

diagonal terms:

FOR L = 0,1,...LMAX.

JKTTg+l WE(T)dT
J

dfl@pL(coso)
E

‘L,g+g’ =

J

Tg
(s
m’

(Iv.2)

WE(T) dT
Tg+l

where WE(T) is the multigroup weight function for elastic’scatteringand

6==, is the Kronecker delta. In CEPXS, a weight function that is

consistent with elastic scattering is eelected:

WE(T) = 6(T-%) (IV.3)

where T: is the midpoint energy of the group.

Hence, the expansion coefficients of the transfer matrices associated

with elastic scattering are:

E
‘L,g+g‘

= a;(T;) bgg(

where:

o:(T) = Jdo+pL(cOse)

(IV.4)

(IV.5)
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The total cross sections associated with elastic scattering are:

E E
ct,g = a.,g+g

(IV.6)

Instead of evaluating these moments by quadrature, CEPXS uses a semi-

analytical approach devised by Berger [BERG2]. In this approach, the

moments of the Goudsmit-Saunderson (G-S) distribution, which are

directly related to the moments of the elastic scattering cross section,

are evaluated. The G-S moments are:

I
1

GL(T) = 2U dp * ( 1- ‘L(coSo) ]

J-1 (IV.7)

The G-S

devised

moments can be expressed in terms of the special functions

by Spencer [SPENCE]:

p(m,L) =
1

1 ( l-x+27)m [ 1- pL(x) ) dx
-1

if the function, h(@,T), by:

5[ j-1
h(d,T) s hj l-cos@+2q(T))

j=l

The coefficients in this expansion, hjl are numerically

(IV.8)

(IV.9)

calculated by

demanding that the expansion be exact-for the five angles at which the

function, D(6,T), is tabulated in the DATAPAC data tape.

With this approximation, the G-S moments for the Mott cross section with

Moliere screening can be expressed in the analytical form as:

[

GL(T) = 2TC(T) p(-2,L)

The recursion relations

= -3/2, -2, -1, 0, 1, 2

3

+ * x(T) P(-3/2,L) +
2

hj p(j-1-2,L)
@ 137 j=l

(IV.1O)

needed to construct the functions, p(m,L), for m

and arbitrarily high Legendre order are
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contained in a reference by Berger [BERG2].

IV.2 THE RILEY CROSS SECTION

The Mott cross section for elastic scattering is accurate only for

relativistic electrons (E > 256 keV). For the elastic scattering of

electrons, with lower energies (down to 1.0 keV), both ITS and CEPXS use

the cross section derived by Riley et. al. [RILEY].

This cross section can be fitted

B, Cn) in the following fashion:

The

by 12 energy-dependent parameters (~,

6
\-m v 1[2

4

*=D Am(T) (1- p + 2B(T)j + ~ Cn(T) Pn(@

I

(IV.11)

m=l n=O

G-S moments with the Riley cross section are:

[2
4

GL(T) = 27D Am(T) p*(-m)L) + CO(T) - CL(T)1(IV.12)

m=l

where dLO is the Kronecker delta and the Spencer functions, p*(m,L),

are defined as:

J1
p*(m,L) = -1 ( l-x+2B)m ( 1- PL(X) ] dx (IV.13)

CEPXS obtains the parameters needed to construct the Riley elastic-

scattering cross section from the electron data tape.

IV.3 TEE EXTENDED TRANSPORT CORRECTION

Since the elastic-scattering cross section for electrons is highly

forward peaked, an accurate Legendre expansion of this cross section

would require an expansion to very high order. A lower-order expansion

is feasible if the extended transport correction is applied to the

elastic scattering cross section. In this approach, the elastic

scattering cross section is “corrected” by the removal of a delta-

function component. This approach has been studied for both neutrons

[BELL] and electrons [MOR1]. In CEPXS, the extended transport

correction is applied to both the Mott and the Riley cross sections.
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In the extended transport correction, the highly forward-peaked elastic

scattering cross section is approximated by a corrected cross section,

(#’, and a delta function component:

where C is an arbitrary constant. (The energy dependence of the cross

sections is suppressed in this discussion.) The corrected cross section

can be represented by a finite Legendre expansion:

LMAX

2

2L+1 *a*(P) = ~ aL ‘L(P)

L=O

(IV.15)

If we require that decomposition of the elastic cross section into a

corrected cross section and a delta function to be accurate to Legendre

order, LMAX, then the Legendre moments of the corrected cross sections

differ from those of the elastic-scattering cross section by a constant:

(IV.16)

forL=O, 1, ...LMAX.

In CEPXS, the terms of the transfer matrix for the elastic-scattering

cross sections are constructed using these moments:

E
‘L,g+g’

= U*(Tm) t5 ,
Lggg

(IV.17)

It is possible for the corrected cross section to be negative at certain

values of p. While such a cross section can be used in discrete

ordinates codes, they are not acceptable for use in multigroup Monte

Carlo codes which sample over p.

A unique corrected cross section does not exist. In order to specify a

particular u“, we must specify C. One way of doing so is to require

that:

%L4x=0 (IV.18)

This is the approach used in CEPXS. With this requirement, the moments

of the corrected cross section become:
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EE
‘~ = ‘L - ‘LMAX

= ‘LMAX - ‘L

(IV.19)
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v. IMPACT IONIZATION AND RELAXATION PRODUCTION

In both the CEPXS and ITS codes, impact ionizations are not correlated

with inelastic collisions. A special impact ionization cross section is

used in both codes solely to determine the production of relaxation

radiation (Auger electrons and fluorescence photons.) The energy of a

relaxation particle is less than or equal to the binding energy of the

shell that is ionized. Since particles are not tracked below the cutoff

energy in either CEPXS or ITS, ionization events in shells with energy

less than the cutoff energy are not considered. The minimum cutoff

energy allowed by either code is 1 keV. The binding energies of

electrons in the K,L1,L2,L3,M, and N shells exceed 1 keV for elements

with Z greater than 10, 27, 29, 29, 51, and 84 respectively. In CEPXS,
the binding energy of the N shell for elements with Z > 84 is taken to

be identically zero.

V.1 THE IMPACT IONIZATION CROSS SECTION

When the NO-PCODE option is selected by a user, CEPXS restricts impact

ionization to the K-shell. The Kolbenstvedt [KOLBEN] cross section for

impact ionization of the K-shell is used. The macroscopic form of this

cross section for a single element is, in units of cm2/g:

2
#,1

(T) =
8ur0 ‘A

[ .42 A(T) + 1.5 B(T) ] IF T~#l
3 A #1~2

=oIFT<#l ,

where:
(V.1)

A(T) = Log
[
1.19 * (T2+2T

#~ ‘-~zl ‘

[[

41
B(T)= l-~ 1-1

T2 , 2T+1 ~
Log (~1

2 (T+1)2 (T+1)2
1]]

#l = ~~;t~-shell binding energy in reduced energy
.

The numeral in the superscript of the above cross section is the index

of the shell

indices that

the lower is

where ionization occurs. The convention regarding shell

we will follow in this report is that the higher the index,

the binding energy of the associated shell. Thus, an index
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of unity is used in Eq. V.1 to indicate that ionization occurs in the K

shell.

By default (without the NO-PCODE option), CEPXS employs the impact

ionization cross sections developed by Gryzinski [GRYZ]. The

microscopic form of the Gryzinski cross section for the impact

ionization of an electron in the i-th shell is, in units of cma:

: ++: [+ b+.,+[~-1 ]1’2] ] [1-$]3’2
~I,i(rq => f

IF T~#i
(V.2)

=OIFT<#i ,

where:
i = Shell index (i = 1,2,3,4,5 : K,Ll,L2,L3,naveragenM),

P2
[

2 1
3/2

fv=$
/? + p; - /32/?

t
P i

#i (#i+2,
!; =

(#i+ 1)2 ‘
and

#i,
. th

= The binding energy of the 1 shell in reduced
energy units.

The macroscopic form of the Gryzinski cross section for an element is:

Ii
I,i =NAgi~’

u
A

(V.3)

where gi is the number of electrons in a complete shell. For instance)

gi ‘s 2)2}2>4)18 ‘or ‘he ‘)L1}L2JL3$ and M ‘hells~ ‘espectively” ‘ile

the outer shells of most atoms are not complete, there is no need to

make gi dependent on the atomic number in high-energy (above one kev)

codes such as CEPXS and ITS. This is because the binding energies of

the outermost shell in all atoms is less than the minimum energy allowed

by the codes. Hence, ionization in the non-complete outermost shell is

irrelevant.
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V.2 RELAXATION PRODUCTION

The impact ionization cross section is associated in CEPXS with the

production of relaxation radiation. Relaxation radiation consists of

Auger electrons and fluorescence photons, These are produced in a

cascade of shell transitions induced by the initial vacancy. The energy

of a relaxation particle is equal to the difference between the binding

energies of the shells involved in a transition.

The impact ionization cross sections of the i-th shell are:

/

T
g dTal’i(T)

#,i = ‘g+l

g ATg
(v.4)

Since the impact ionization cross section is solely used to determine

the production of relaxation radiation, impact ionization does not

contribute to

The expansion

production of

are:

the total reaction rate.

coefficients of the transfer matrix associated with the

electron relaxation radiation following impact ionization

FOR g = 0,1,...G.

where: i=

j=

?~j =

‘j=

i=l j=l J

(V.5)

The index of the ionized shell,

The index of the line radiation,

.th
The relaxation efficiency that the ~ Auger electron

.th
is produced following the ionization of the 1 shell.

The

.th
J

electron group that contains the energy of the

Auger electron.

Since Auger emission is isotropic, only the lowest Legendre-order

transfer matrix is shown in Eq. V.5. The higher-order transfer matrices

for Auger (and fluorescence) production contain terms that are

identically zero.
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There are twenty-eight different transitions in the various relaxation

cascades that can follow an ionization event. The line radiations

associated with each of these transitions are identified in the Chapter

VI. The relaxation efficiencies for Auger and fluorescence emission are

also discussed in the next chapter.

The transfer matrix associated with fluorescence production resulting

from impact ionization consists of the following terms:

FORg= 1,2,..G:

5 28
IF

>>

I,i
ag+f,o = Vij 6 ffj ‘g ‘

(V.6)

i=l j=l

where:

~~j

.th
= The relaxation efficiency that the j fluorescence

.th
photon is produced following the ionization of the I

The effective

production of

shell,

f: = The photon group
J

. th
J fluorescence

energy deposition cross

relaxation radiation by

that contains

photon.

the energy of the

I

>

#J3
‘E,g = - g+g’,0

J3’

sections associated with the

impact ionization are:

E;, ‘; (V.7)

Note that these cross sections are expressed in terms of the midpoint

energies rather than line radiation energies, as is consistent with the

defi~ition

The charge

relaxation

of the effective energy deposition cross section in Eq. 1.33.

deposition cross sections associated with the production of

radiation by impact ionization are:

I

>

#E
‘C,g = - g+g’,o

g’

(V.8)

while the secondary production cross sections associated with the

production of relaxation radiation by impact ionization are:
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I

>

~IE

I
IF

*sjg = g+g’jo + ‘g+f,0
g’ f

(V.9)
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VI. TEE RELAXATION CASCADE

After an atomic shell is ionized, whether by impact ionization or

photoelectric ionization, a cascade of relaxation radiation will be

produced. An atomic transition is induced by the vacancy created by the

initial ionization event. In the subsequent relaxation cascade, these

transitions induce vacancies in other shells which lead to the emission

of additional line radiation. The relaxation cascade ceases when a

transition produces a vacancy in the outermost shell of the atom.

VI.1 THE NO-PCODE OPTION

With the NO-PCODE option, ionization in CEPXS is restricted to the K-

shell. Moreover, this option invokes a simple model of the relaxation

cascade with only two possible branches. In one branch, a single Auger

electron is emitted while in the other, only a single fluorescence

photon is emitted. This simplified relaxation cascade is sketched

below:

(VI.1)

x x

where:

K denotes a vacancy in the K-shell

X denotes a vacancy in the outermost shell of the atom

A denotes a transition that produces an Auger electron

F denotes a transition that produces a fluorescence photon

(K:F) denotes the probability that a fluorescence transition from
the K-shell occurs

+1 (cf. the fluorescence efficiency in Eq. V.6)

1-(K:F) denotes the probability that an Auger transition from the

K-shell occurs

=~~1 (cf. the Auger efficiency inEq. V.5)
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The K-shell fluorescence efficiency [BURHOP]of an element can be

expressed as a function of the atomic number by:

(K:F) = -A+Bz-cz3 , (VI.2)

where:

A = .064

B = .034

c= .00103.

The coefficients in the formula for the fluorescence efficiency have

been experimentally determined [EAGE].

In this simplified cascade, both the fluorescence photon and the Auger

electron are emitted with the same energy. This line energy is slightly

less than the K-shell binding energy and represents an ‘averageH of the

energies that these particles would acquire in a real relaxation

cascade. The line radiation energies that are used in CEPXS with the

NO-PCODE option are identical to those employed in the non-P-code

members of ITS.

VI. THE PCODE CASCADE

More complex relaxation cascades are used by CEPXS if the NO-PCODE

option is not invoked. These cascades are essentially equivalent to

that in the PCODES of ITS. The only difference is that, in CEPXS, the

binding energy of the N-shell is assumed to be zero for all elements.

In ITS, only the N-shell binding energies for elements with Z less than

85 are assumed to be zero.

The complex relaxation cascades of both CEPXS and ITS were originally

developed for the SANDYL Monte Carlo code [SANDYL]. The radiation

cascade that follows M-shell ionization is shown in Fig. 7(a). The

radiation cascades that follows ionization of the Ll, L2, and L3 shells

are partially shown in Fig. 7(b). The full relaxation cascade from

these shells is obtained by a combination of Figs. 7(a,b). The

radiation cascade that follows ionization of the K shell is partially

shown in Fig. 7(c). Since the K-shell relaxation cascade induces

ionizations in the Ll, L2, L3 and M shells, the complete K-shell

ionization cascade is obtained by a combination of Figs. 7(a,b,c).

CEPXS obtains from the electron data tape the shell binding energies,
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#i} that are needed to calculate the line radiation energies. Also

obtained from this data tape is the information necessary to calculate

the relaxation efficiencies for Auger production, q“ and fluorescence

production, ~f. In ITS, such data resides in an array of relaxation

quantities [HALB]. In CEPXS, an identical array is used to store

similar information. The parameters that are stored in this array are

referred to as relaxation quantities. A relaxation quantity is denoted

in this report by a bracketed integer which indicates the array index in

which this information is stored. For instance, the shell binding

energies for the K,L1,L2,L3 and M shells are stored in the relaxation

quantity array at indices [2], [4], [6], [7], [8], respectively.

The relaxation efficiencies are calculated using probability parameters

stored in the relaxation quantity array. These parameters are the

conditional probabilities for portions of the relaxation cascade. For

instance, the relaxation quantity, [5], is a probability parameter that

denotes the probability that a Auger KLL transition has produced

vacancies in the L2 and L3 shells. This probability parameter is

denoted in the tables below by (KLL:L2+L31A:KLLIK:A). Similar notation

is used to describe the other parameters.

Table VI.1 Line Radiation from K-Shell

INDEX ?~i

Partial Cascade, Fig. 7(c)

Vfj
..

J ENERGY

1

2

3

4

!5

6

7

8

9

#K (1-[1]) (1-[11]-[12]) (.045) [1] (1-[49]-[50]-[51])

#K-#M(1-[1]) (1-[11]-[12]) (.045) [1] [51]

#K-fj@& (1-[11)(1-[111‘[121)(.91)

#K-#L3 (1-[11)[121(1-[631)(1-[611-[621) [1] [46]

#K-#L2 (1-[1]) [12] (1-[63]) [62] [1] [50]

#K-#L~ (1-[1]) [12] (1-[63]) [61]

#K-#L3-#M (1-[11)[121[631(1-[611-[591)

#K-#L2-#M(1-[1]) [12] [63] [60]

#@j~-#~ (1-[1]) [12] [63] [59]
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10 #K-#L3-#Ll(1-[1]) [58] [11]

11 #K-#Ll-#L3 (1-[1]) [57] [11]

12 #K-#L2-#L2 (1-[11)[11](1-[5]-[55]-[56]-[57]-[58])

13 #K-#L2-#L3 (1-[1]) [5] [11]

14 #K-#Ll-#L2 (1-[1]) [56] [11]

15 #K-#Ll-#Ll (1-[1]) [55] [11]

where:

[1] = (K:F) [56] = (KLL:L1+L21A:KLLIK:A)

[5] = (KLL:L2+L31A:KLLIK:A) [57] = (KLL:L1+L31A:KLLIK:A)

[11] = (A:KLLIK:A)

[12] = (A:KLXIK:A)

[49] = (F:L31K:F)

[50] = (F:L2]K:F)

[51] = (F:M:K:F)

[55] = (KLL:L1+L1

[58] = (KLL:L3+L31A:KLLIK:A)

[59] = (KLM:L1+MIKLX:KLMIA:KLXIK:A)

[60] = (KLM:L2+MIKLX:KLMIA:KLXIK:A)

[61] = (KLN:L1+NIKLX:KLNIA:KLX]K:A)

[62] = (KLN:L2+NIKLX:KLNIA:KLXIK:A)

A:KLL K:A) [63] = (KLX:KLMIA:KLX\K:A)
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VII.

In both

section

INCOHERENT PHOTON SCATTERING AND COMPTON ELECTRON PRODUCTION

the CEPXS and ITS codes, the Klein-Nishina scattering cross

is used to represent the incoherent scattering of photons with

atomic electrons. The Klein-Nishina cross section was derived for

scattering with free or unbound electrons. The assumption that the

photon collides with an unbound atomic electron is not valid for photons

with energies on the order of the atomic binding energies [BIGGS1].

However, photoelectric absorption interactions dominate incoherent

scattering at such energies. Both codes also ignore coherent scattering

[BIGGS2]. The Klein-Nishina cross section is also in both codes to

model the production of Compton electrons.

VII,l THE KLEIN-NISHINA CROSS SECTION FOR PHOTON SCATTERING

The Klein-Nishina cross section for unpolarized, incoherent photon

scattering is differential in the angle of the scattered photon relative

to the incident photon’s direction [MARM]. The microscopic form of this

cross section for an interaction with an atomic electron is (in units of

cm2sr-1/electron):

(VII.1)

where:

T = The energy of the incident photon in reduced energy

units.

T’ = The energy of the scattered photon in reduced energy

units. T’ can vary fromT (forp7= 1) toT/(l+2T)

(for #7 = -1)

and,

=1++-+,
‘7

(VII.2)

Since the angle of scatter is cinematically determined by the energy at

which the scattered photon emerges from the interaction, the Klein-

Nishina cross section may also be expressed as a cross section that is

differential in energy. In this case, the microscopic form of the

Klein-Nishina cross section (in units of cm2/electron per reduced photon

energy) is:
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d(~(T, T’) ur~ ~ T,

[
1[

1 ~
2

dT’ =
T2

T’ ‘F-
2[+-++ T-T 11 (VII.3)

Because energy and angle are cinematically related, the Klein-Nishina

cross section for photon scattering that is differential in both energy

and angle is given by:

Hence, the expansion coefficients of the transfer matrices associated

with photon incoherent scattering are:

FOR L = 0,1,...LMAX.

FOR f’=f, f+l, ...F. (VII.4)

‘f

dT
.

where the argument of

‘f‘ df~(TjT’)

‘T’ ‘(AT’) ‘L(P7)

[

dT‘

‘= ‘f(+l ‘ (lf2T)1

.he step function is:

AT’ = Tf, -
T

Max [ ‘p+l ‘ (1+2T) 1

and ATf = Tf - Tf+l.

The terms of the macroscopic transfer matrices for incoherent scattering

are related to the terms of the microscopic transfer matrices by:

(VII.5)

As has been pointed out by Renken, et. al. [DTF], numerical integration

of the Klein-Nishina cross sections is susceptible to inaccuracies due

to the numerical cancellation. These problems can occur if the Legendre

order is large (L>3), if the photon energy small (Ef < 10 keV), or if

the photon group width is small.

Most of these difficulties can be avoided if the terms of the transfer

matrices are not calculated to the maximum Legendre order, LMAX. For

instance, the Klein-Nishina cross section becomes significantly
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anisotropic only at higher energies (> 100 kev) [RENKEN]. Hence, for

photons in the lower energy groups, only a few of the Legendre moments

need to be calculated.

The Legendre moments of the Klein-Nishina cross sections are:

2

KN

‘~L = af+f’,L
(VII.6)

f’

In CEPXS, we perform the following test on these Legendre m~ments in

order to avoid potential numerical
difficulties in calculating the terms

of the incoherent transfer matrices.
If the ratio:

KN
/

KN
‘f,o

(VII.7)
‘f,L

is less than .01, the higher-order expansion coefficients that represent

photon-to-photon incoherent scattering are set to zero:

‘~f’,L+l =
o

KN
‘f+f’,L+2 = 0

0

0

0

‘~f’,L~ =
o

The total cross sections for incoherent scattering are:

FORL =0,1, ...L~.

FOR f’ = f, f+l, ... F:

(VII.8)

II‘f
T

da~(T,T’)
KN 1 dT dT‘
‘t,f ‘~ T

~

f+l T
m

(VII

The effective absorption cross

are:

sections due to incoherent scattering

.9)



*KN KN I KN
a,f = ‘tjf - ‘f+f‘,0 (VII.10)

f’

The effective energy deposition cross sections due to incoherent photon

scattering are:

KN KNm

I
KN

aE,f ‘%,fEf - af+f‘,0 % ‘ (VII.11)

f’

VII.2 COMPTON ELECTRON PRODUCTION

The Klein-Nishina cross section for electron production can be written

as differential in the angle of emission of the C!omptonelectron

relative to the incident photon’s direction. The microscopic form of

this cross section [MA.RM]for an interaction with an atomic electron is

(in units of cm2sr-1/electron):

d~cO(T,@e) (1+T)2 (1-p )2 r: T, 2 ~

dfl =
—

[1[~ T’ ] (VII.12)
e P3e 2

‘F - sin297

where:

Pe=y

and e is the kinetic energy of the

(2/e + 1)1/2

Compton electron in reduced energy

units. The energy of a Compton electron ranges from zero (atp7 = 1) to

2T2
1+2T

(at p7 = -1). The Compton electron production cross section can also be

cast into a form that is differential in the kinetic energy of the

electron. In this case, the microscopic form of the Klein-Nishina cross

section (in units of cm2/electron per reduced electron energy) is:

d~cO(T,e ) Idnal d~c0(T,(9a)

de = 1s1 dn “
e (VII.13)

-70-



Because energy and angle are cinematically related, the Klein-Nishina

cross section for electron production that is differential in both

energy and angle is given by:

g=

e

For Compton electron production per collision with an

the expansion coefficients of the transfer matrices are:

atomic electron,

FORL = 0,1,...L~.

... G:FORg= 1, 2,

(VII.14)

J[ 2
‘f Min eg , ~ 1 d~co(T,@

dT de H(~C) PL(Pe) ~
‘f+l ‘g+l

where the argument of the step function is:

[

2
Ae=Min ~g,~

1 - ‘g+l

The terms of the macroscopic transfer matrices for Cqmpton electron

production are related to the terms of the microscopic transfer matrices

by:

(VII.15)

The cross section for Compton electron production becomes significantly

anisotropic for photons of high energies [MARM]. Hence, only a few

Legendre-moments need to be

groups.

The Legendre moments of the

‘;;L

calculated for the lower-energy photon

Compton production cross section are:

>

co=
af+g,L

g
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In

of

is

CEPXS, we perform the following test to avoid calculating the terms

the transfer matrices to excessive order. If the ratio:

a!~L / ~::o
(VII.17)

less than .01, the terms of the higher-order expansion coefficients

that represent Compton production from group (f) are set to zero:

KN
af+g,L+l = o

I(N
‘f+g,L+2 = o

0

(VII.18)

o

0

KN
af+g,LMAX

=0

The effective energy deposition cross sections associated with Compton

electron production are:

co I CO Em
aE,f ‘- ‘f+g,o g

g

The charge deposition cross sections for Compton production are:

co I co
‘C)f = - ‘f+g,o

and the secondary production cross

co 2 co
%,f = af+g,o

(VII.19)

(VII.20)

sections for such interactions are:

(VII.21)
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VIII. PHOTOELECTRIC ABSORPTION, PHOTOELECTRON PRODUCTION

AND PHOTOELECTRICIONIZATION/RELAXATIONPRODUCTION

Both CEPXS and ITS use the Biggs-Lighthill formulation [BIGGS3] for

photoelectric absorption cross section. The latest Biggs-Lighthill

parameter set [BIGGS4] is not currently used in CEPXS.

VIII.1 PHOTOELECTRIC ABSORPTION

the

The photoelectric absorption cross section, in units of cma/g, can be

expressed as a four-parameter fit [BIGGS3]:

4

apA(E) = ~ Ck E-k (VIII.1)

k=l

where (E) is the energy of the photon in keV.

This cross section is defined as the probability per unit pathlength

that photoionization occurs in any shell. The total cross sections

associated with photoelectric absorption are:

PA
‘t,f

\

‘f
dE apA(E)

E
f+l

AEf

For photoelectric absorption, the absorption cross

to the total cross section:

~PA PA
a,f = ‘t,f

(VIII.2)

section is identical

The effective energy deposition cross sections associated with

photoelectric absorption are:

PA
aE,f = U:’f

VIII.2 THE PRODUCTION OF PHOTOELECTRONS

(VIII.3)

‘; (VIII.4)

A photoelectric interaction produces an electron with kinetic energy

equal to the energy of the photon less the binding energy of the shell

that was ionized. The cross section for photoelectric production can be
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separated into

electron and a

a cross section that is differential in the energy of the

normalized angular distribution:

6

*=
>

* dup::im~l (VIII.5)

i=l

where:

i =The shell index (i=l,2,3,4,5,6 : K,Ll,L2,L3,fiaverageRM,

“effective” N),

E = The energy of the photon,

E = The kinetic energy of the photoelectron = E - #i ,

n = The angle at which the photoelectron is emitted relative to the

direction of the photon,

Wi = The differential angular distribution of photoelectrons

produced by ionization of the i-th shell,

#i z The binding energy of the i-th shell in MeV.

The outer shells of an atom (N-shell and beyond) are considered to have

zero binding energy in CEPXS. A photoelectric interaction with these

shells produces electrons with the same energy as the photon. As far as

CEPXS is concerned, the “effective” N-shell includes all the outer

shells of an atom. Note also that an ionization cross section (Eq. V.2)

is not calculated for these outer shells since a vacancy in one of these

shells does not induce relaxation radiation in CEPXS.

The photoelectric production cross section is:

daPE,i(E ~

de = Xi(E) apA(E) 6(e-E+#i) (VIII.6)

where:

Xi (E) = The probability that a photon of energy E ionizes the i-th

shell.

The photoionization probability, xi, can be evaluated in terms of

photoeffect efficiencies, /i. These are defined using the values of the

photoelectric cross section immediately above and below the shell
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binding energy [SANDYL] in

/i=l -

the following manner:

(VIII.7)

where 6 is an arbitrarily small energy increment. In CEPXS, 6 is taken

to be one keV for the numerical calculation of photoeffect efficiencies.

The photoeffect efficiency denotes the probability that photoionization

will occur in the i-th shell provided that photoionization has not

occured in any of the shells with larger binding energies than #i. With

the NO-PCODE option, only the K-shell photoeffect efficiency, /1, is

employed. It is calculated using the Biggs-Lighthill photoelectric

cross section. In the default version of CEPXS, the

efficiencies can be expressed in terms of relaxation

obtained from ITS:

f~=l - [9] ,

f~=l- [13] ,

f3=l -[14] ,

fq=l -[15] ,

/5=1-[16] ,

f~ = 1.0

photoeffect

quantity data

(VIII.8)

where the bracketed numerals are the indices of the relaxation

quantities obtained from ITS [EALB].

The photoionization probability of the six shells can be expressed in

terms of these photoeffect efficiencies as:

X1(E) =/1 if E>#l

= o if#l>E

X2(E) = (1-!1)/2 if E > #l

= fz if#1>E>#2

=0 if#2>E
(VIII.9)
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X3(E) = (1-/1) (1-f2)f3 if E > #l

X4(E) =

X6 (E) =

(1-fJf3 if#1>E>#2

f~ if#2>E>#3

o if#3>E

(1-fl)(l-f2)(l-f3)f4if E> #l

U-fz)(1-f3)f4 if#1>E>#2

(1-fJf4 if#2>E>#3

f* if#3>E>#4

o
if#4>E

(1-fl)(l-f2)(l-f3)(l-j4)f5HE> #l

(1-f2)(Lf3)(1-f4)f~
if#1>E>#2

(1-fJ(1-f4)f5 if#2>E>#3

(1-f/Jf5 if#3>E>#4

f~ if#4>E>#5

o
if#5>E

(1-fl)(l-f2)(l-f3)(l-f4)(l-f5)f6if E>”#l

(1-f2)(1-f3)(1-f4)(1-f5)f6
if#1>E>#2

(1-f3)(1-f4)(1-f~)f~
if#2>E>#3

(1-f~)(1-f~)f~
if#3>E>#4

(1-fJf6
if#4>E>#5

f~
if#5>E>#6

o
if~ >E6

6

2
xi(E) =1.0

i=l

The cross section transfer matrix associated with photoelectron



production are:

FOR L = 0,1,...LW.

FOR f = 1,2,...F.

(VIII.10)

or:

1 [Min Ef , ~g+ #i
1

~ H(AE) xi (E) ~pA(E) ~
r

6
PE
af+g,L = 2

w;($)

i=l
(VIII.11)

where the argument of the step function is:

[ HAE =Min Ef , ~g + ~i - Max Ef+l} ~g+l + #i1
Two different normalized angular distributions for the

are used in CEPXS. For low-energy photoelectrons, the

distribution [DAVISS] is used:

photoelectrons

Fischer

2

+= ~+= 3[1-b2] sin36

8U (1-b COS8)4

where:

(VIII.12)

b=+
.

1 + 1.02;

and all energies are expressed in terms of MeV~ and #i is the binding
energy of the shell that was ionized by photoelectric absorption.

For high-energy photoelectrons, the Sauter distribution [DAVISS] is

used:
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Mf&l
[

.+d!&k!. .A P2(l-02)1/2sin3@+ (1+(1-B2)1’2]2b2sin39
%

(1-pcose)4 2 (1-p2) (1-pcose)s

(VIII.13)

where:

[obA=4
2(1- 2)1/2 (1+ (1-172)l@)2B2+
3 (1-p2)2 2 (1-pz)

Note that the Sauter distribution dep..

-1

2
-~Log(~]

/12(1-p2) p )]

Ids only on the energy of the
photoelectron and not on the binding energy of the shell that was

ionized. Hence, the shell index superscript on the angular

distribution in Eq. VIII.13 is suppressed.

In CEPXS, we follow the recommendation of MacCallum [MAC] that the

choice between the Fischer and Sauter angular distributions be made in

the following way:

Fischer IF e ~ .0025 Z - .5 * #l
(VIII.14)

Sauter IFe > .0025Z - .5 * 01

where #l is the binding energy of the K-shell and all energies are in

MeV.

The Legendre moments of the photoelectron angular distribution:

J%
.

W:(6) = 2T d9 PL(COS6) w
o

(VIII.15)

are calculated by quadrature in CEPXS. The calculation of the

multigroup-Legendre transfer matrix for photoelectron production (Eq.

VIII.1O) is simplified by evaluating the Legendre moments of the

photoelectron angular distribution at

electron group.

The effective energy deposition cross

production of photoelectrons are:

the midpoint energy of the

sections associated with the
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PE
‘E,f = - 2

g

The charge deposition cross

PE m
af+g,o %

(VIII.16)

sections associated with photoelectric

production are:

PE
‘C,f

and the secondary

PE
‘s)f

PE
‘f+g,0

production cross

2 PE=
‘f+g,o

(VIII.17)

sections for these interaction are:

(VIII.18)

g

VIII.3 RELAXATION PRODUCTION

The same relaxation radiation cascade is produced whether ionization

occurs by electron impact or the photoelectric effect. The multigroup

photoionization cross section of the i-th shell is given by:

I‘f ~ X:(E) apA(E)

PI,i =
j Ef+l ‘-4

af LEf
(VIII.19)

The expansion coefficients of

electron relaxation radiation

are:

the transfer matrix associated with

production resulting from photoionization

FOR f = 1,2,...F.

(VIII.20)

where: i=

j=

i=i j=l J

The shell index,

The index associated with line radiation,

= The relaxation efficiency that the electrons of

line index j will be produced following ionization of

the ith shell,
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= The electron group
‘j

.th
J Auger electron

that contains the energy of the

The expansion coefficients of transfer

fluorescence production resulting from

FOR f = 1,2,...F.

matrix associated with
impact ionization are:

where:

The energy

relaxation

5 28
PIF

1>
?~j af(f

PI,i
~f+f’,()= j ‘f

i=l j=l

(VIII.21)

The relaxation efficiency that a

of line index j will be produced

fluorescence photon

following ionization

of the ith shell,

The photon group that contains
.th
J fluorescence photon.

the energy of the

deposition cross sections associated with the production of

radiation by photoionization are:

PI

2

PIE Em

2

PIF
aE,f = - af+g,o g - ~f+f’,o ‘;‘

(VIII.22)

g f’

The charge deposition cross sections associated with the production of

relaxation radiation by photoionization are:

PI

I

PIE
ac,f = - ‘f+g,o

g

(VIII.23)

The secondary production cross

relaxation radiation following

section associated with the production of

photoionization is:

PI

I

PIE

2

PIF
‘s)f = “f+g,o + af+f‘,0

g f’

(VIII.24)
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IX. PAIR ABSORPTION AND SECONDARY PRODUCTION

Both CEPXS

absorption

and ITS use the Biggs-Lighthill formulation for

cross section.

the pair

1X.1 PAIR ABSORPTION

The pair absorption cross section, in units of cmz/g-photon, can be

expressed as a parameter fit [BIGGS5] in the following fashion:

*PAA
(E) =0.0 IF E < 1022 keV ,

(1X.1)

apM(E) =C [E-1022) IF 1022 keV < E < 1500 keV ,

7
k

~PAA
Ak (E-1022

(E) = ~
1

OTHERWISE,

k=l 1.0+ 1.7(10-13) (E-1022)3

where E is the energy of the photon in keV. The Biggs-Lighthill cross

section for pair absorption is valid up to 100 MeV.

The total cross sections associated with absorption from pair

interactions are:

PAA

1

‘f
‘t)f = ~

dE OPU(E)

f+l
AEf

(1X.2)

For absorptive interactions such as the pair interaction, the absorption

cross section is identical to the total cross section:

~PAA PAA
a,f = ‘t)f

The effective energy deposition cross sections

absorption are:

(1X.3)

for pair interaction

(IX.4)



1X.2 TRE PRODUCTION OF PAIR SECONDARIES

A pair interaction results in the production of a positron and an

electron. The energies of the pair secondaries (in keV) are correlated

in the following fashion:

where e- is the energy of

+
C-+6 = hv - 1022 (1X.5)

the pair electron, c+ is the energy of the

pair positron, and hv is the energy of the photon. The expression on

the right side of Eq. 1X.5 is the energy that is available for

distribution to the pair secondaries. Both the positron and the

electron can have kinetic energy that varies from zero to this maximum

available energy.

The cross section for the production of a pair positron can be separated

into three components: the total pair absorption cross section, a

normalized distribution that is differential in the energy of the

positron, and a normalized distribution that is differential in the

angle of emission of the positron relative to the direction of the

incident photon:

daP+ E ~+
Y = apw(E) * ‘fp;~~’‘+) (1X.6)

de+dfl

The cross section for the production of a pair electron is similar:

The same angular

positron. Since

distributions are used for both the electron and the

pair production occurs in the vicinity of a nucleus

which acquires some of the momentum of the incident photon, the angles

at which the pair secondaries are emitted are not correlated.

Since bremsstrahlung and pair production are inverse processes, the same

angular distribution can be used for pair secondaries as was used for

bremsstrahlung photons (cf. Eq. 111.14):

ml@= LJ&= 1 -~2
4U (l-pp)z

(1X.7)

Just as the bremsstrahlung angular distribution becomes more forward

peaked as the incident electron’s energy increases, the angular



distribution of pair secondaries becomes increasingly forward peaked as

the incident photon’s energy increases. The recursion relation for the

Legendre moments of the bremsstrahlung distributions (Chapter III) are

used to evaluate the Legendre moments of this distribution.

Both pair secondaries have the same

&.@i) .
de-

The energy distribution of the pair

distribution in energy:

-) (1X.8)
de+

secondaries is given by Bethe-

Heitler theory [BETHE]. In CEPXS, tabulated values for this

distribution at selected photon energies were obtained from a text

[W] . The energy distribution of the pair secondaries are tabulated

up to a photon energy

accessed by CEPXS.

In Fig. 8, the energy

five different photon

of 100 MeV on one of the cross section data tapes

distribution of the pair secondaries is shown for

energies.

function of the fraction:

x=

The distribution is plotted as a

hu - 2mec2

of the available energy possessed by the pair secondary. Since either

the electron or the positron can emerge with all of the available

energy, this fraction can vary from zero to unity.

Only half of the energy distribution function is shown in Fig. 8. The

rest of the distribution is symmetric about x = 0.5. This symmetry

reflects the correlation in energy of the positron and the electron

described in Eq. 1X.5. Not shown in the Figure 5 are curves for this

distribution at two other photon energies that are tabulated in CEPXS:

at hv = 1.53 MeV, the distribution is the same as that at hv = 5.11 MeV

and at hv = 1.02 MeV, the distribution function is unity for all x. For

a particular photon energy and a particular secondary particle energy,

the value of the distribution function is obtained in CEPXS by a two-

dimensional interpolation of this seven curve set.

The expansion coefficients of transfer matrices for pair electron

production are:



FOR L = 0,1,...LMAX.

FORf =1,2, ..F:

P- 1

JI

‘f ~ ‘g m*de LTPPA(E)WL(Eg)
‘f+g,L ‘~

(1X.9)

‘f+l ‘g+l

Note that the angular distribution of the pair electrons is evaluated in

at the midpoint energy of the electron group.

The transfer matrices for positron pair production are the same as those

for electron pair production:

The effective

production of

P+
‘f+h,L =

energy deposition cross

electrons and positrons

P-

2

P-
aE,f ‘- af+g,o *;

P-
af+g,L

(IX.10)

sections associated with the pair

are:

(1X.11)

P+

2

P+
aE,f ‘- “f+h,()‘;

h

The secondary production cross sections associated with the pair

production of electrons and positrons are:

P-

1

P-
%,f = af+g,o

(1X.12)

P+

2

~P+
‘S,f = f+h,o

h



X. POSITRON INTERACTIONS

The same elastic scattering, inelastic scattering, and impact ionization

cross sections are used for both electrons and positrons in CEPXS.

Positron specific cross sections (e.g the inelastic Bhabba scattering

cross section [BHABBA]) are not implemented in CEPXS.

Unlike electrons, positrons can undergo annihilation reactions. Both

ITS and CEPXS allow annihilation to occur only when the positron is

‘absorbed”. That is, annihilation occurs when the energy of the

positron becomes less than the cutoff energy, EG+l. In the

annihilation process, two photons, each possessing the energy equivalent

to the rest mass of an electron, are produced. These annihilation

quanta are emitted isotropically. The transfer matrix associated with

the production of annihilation radiation consists of the following

terms:

(Xl)

where f’ is the photon energy group into which the annihilation quanta

are produces.

The secondary

production of

and energy deposition cross sections associated with the

annihilation radiation are:

200 ~~ h
)

Op
- 2“0E~’ a,h

(x.2)



XI. COMPARISON TO ITS

The models used in CEPXS and ITS (Version 2.1) for electron interactions

are compared in Table XI.1.

Table X1.1 Electron interactions in CEPXS and ITS

INTERACTION CEPXS ITS

Inelastic

Collisional

Scattering

Energy-loss

Straggling

Deflection

of primaries

Knock-on

Production

Knock-on

Correlation

with Primaries

Collisional

Stopping

Power

Radiative

Emission

Inelastic

Radiative

Moller cross section for

catastrophic collisional

energy losses and

restricted CSD for soft

energy losses

Implicit for catastrophic

collisions and none for

soft collisions

Truncated Legendre

expansion

Moller cross section

Correlation with primaries

from catastrophic collisions

Bethe stopping power with

the Sternheimer density

effect correction and

extrapolation of the

stopping power below

10 keV

Condensed history

for all collisional

energy losses

Explicit in

condensed-history

for all collisions

Included in elastic

scattering cross section

Moller cross section

No correlation between

knock-ons and primaries

Bethe stopping power

with the Sternheimer

density effect

correction

Simple bremsstrahlung Complex bremsstrahlung

cross section cross section by default

Bremsstrahlung cross section Bremsstrahlung cross

for catastrophic radiative section for all



Scatter

Energy-loss

Straggling

Deflection

of electron

by radiative

emission

Bremsstrahlung

Correlation

Elastic

Scattering

Impact

Ionization/

Relaxation

Correlation

with knock-on

production

Relaxation

energy losses and restricted radiative energy losses

CSD for soft radiative

energy losses

Implicit for catastrophic

radiative events and none

for soft radiative events

None

Scattered electrons

correlated with

bremsstrahlung for

catastrophic events but not

for soft radiative events

Mott cross section with

Moliere screening for

E > 256 keV and

Riley cross sections used

for E < 256 keV

Single-event cross sections

with the extended transport

correction

Kolbenstvedt cross section

for NO-PCODE option.

Gryzinski cross section

by default

None

Only from K-shell with

NO-PCODE option

From K,L1,L2,L3, average M

shells by default

Implicit for all

radiative events

None

Correlation between all

radiatively scattered

electrons and

bremsstrahlung

Mott cross section with

Moliere screening for

for E > 256 keV and

Riley cross sections

for E < 256 keV

Goudsmit-Saunderson

condensed-history

distribution

Kolbenstvedt cross

section by default.

Gryzinski cross section

for PCODE option

None

Only from K-shell by

default

From K,L1,L2,L3,

M, and average N

for PCODE option

average

shells



The models used in CEPXS and ITS for photon interactions are compared in

Table X1.2.

Table X1.2 Photon Interactions in CEPXS and ITS

INTERACTION CEPXS ITS

Incoherent

Scattering

Coherent

Scattering

Compton

electron

production

Photoelectric

Absorption

Photoelectric

Production

Pair Absorption

Pair Production

Klein-Nishina

None

Klein-Nishina

Biggs-Lighthill

Photoeffect efficiencies

from data tape

Fischer and Sauter

angular distributions

Biggs-Lighthill

Sommerfield angular

distribution

Bethe-Heitler theory

for energy distribution

Klein-Nishina

None

Klein-Nishina

Biggs-Lighthill

Photoeffect efficiencies

from data tape

Fischer and Sauter

angular distributions

Biggs-Lighthill

Sommerfield angular

distribution

Bethe-Heitler theory

for energy distribution



XII. GLOSSARY

Some of the terms used frequently in this report are given below along

with

Ai

P

E

<

f

g

h

H(x)

LMAX

me

mec2

NA

r.

P

c1

E

T

Wi

the units in which they appear in CEPXS.

s Gram-atomic weight of the itihelement in a compound

= v/c = [T(T+2)]l/2/(T+l)

s Photon energy in reduced energy units

(i.e. in units of an electron rest mass)

~ Microscopic cross section (cma)

~ Group index for photons

~ Group index for electrons

z Group index for positrons

{

Oifx~O
=

lifx>O

: Maximum Legendre order of cross sections

s Rest mass of electron in g

❑ Rest mass of electron in MeV

s Avogardo’s number = 6.023 X 1023

s Classical electron radius = 2.82e-13 cm

~ Material density (g/cm=)

s Macroscopic cross section (cm2/g)

~ Aggregate macroscopic cross section (cm2/g) for many

interactions.

~ The kinetic energy of an electron in reduced energy units

“tihelement in a compoundz Weight percent of the 1



Zi ~ Atomic number of the ith element in a compound
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Fig. 1. The total colli8ional stopping power and the restricted
collisional stopping power vs. energy in gold.



50

45

40

? 35
N

E 30

? 25
+

g 20

15

10

5

Total CollisionalStopping Power
Tungsten

, I , I , I I
? Extrapolation x = .61
10 . . . . . . . . . . BETHE Theory

o
0

0
0

,-------
8 -.. ----

48I#

, I , 1 1 I , I ,

0.000 0.002 0.004 0.006 0.008 0.0

Energy (Mev)

Fig. 2. The total collisional stopping power in tungsten below 10 keV
according to Bethe theory, refined predictions, and the
parabolic extrapolation used in OBPXS.
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APPENDIX A. CODE INDEX

EQUATION

1.24

11.3

11.5

11.9

11.10

11.15

11.18

II.23

II.25

II.30

11.31

II.32

II.33

II.36

III.1

III.8

III.9

111.17

111.18

111.21

ROUTINES

EFABCK, RITE

XEEMOL

XEPMOL

MOL

MOL

XESMOL

MOL

MOLLER

MOLLER

MOL, MOLLER

PREPD

MOL, MOLLER

MOL, MOLLER

STERN

XBD

E2EBRM

132EBRM

E2PBRM

BCOF

E2EBRM

VARIABLES

XTOTCC

PRIM

SECD

CSDA

CSDA

ASLT, RESTR

ALST1, RESTR1

ALST2, RESTR2

DENMAT

XTOTCC

BXSEE

BXSEP

BXSEE



III.23

III.28

111.31

IV.1O

IV.12

IV.18

V.1

V.2

VIII.3

VIII.4

VIII.10

VIII.11

1X.6

IX.1O

1X.11

IX.12

1X.13

E2EBRM

E2EBRM

XEAMOT

GINTP

BETA

XRAY

XRAY2

SIGKN

SIGLEG

SIGKNE

SIGLEG

PEELEC

PHOTOPE

PEELEC

FISCHER

SAUTER

BXSEE

BSLT, RESTR

BSLT1, RESTR1

BSLT2, RESTR2

G

G

WGXS

XSN

XSN

PPXS
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